利用历史数据集跟踪复杂地理空间现象的粒子滤波的一种变体

A. Panangadan, A. Talukder
{"title":"利用历史数据集跟踪复杂地理空间现象的粒子滤波的一种变体","authors":"A. Panangadan, A. Talukder","doi":"10.1145/1869790.1869824","DOIUrl":null,"url":null,"abstract":"The paper presents an extension of the particle filtering algorithm that is applicable when an accurate state prediction model cannot be specified but a database of prior state evolution tracks is available. The conventional particle filtering algorithm represents the belief state as a collection of particles, where each particle is a sample from the state space. The particles are updated by applying the state space equations. In the proposed approach, each particle is an instance of a complete state trajectory, drawn from the database of historic state trajectories. An explicit state update model is not required as the trajectory represented by each particle is covers the entire modeling time period. When new observations become available, a proportion of the particles are replaced using trajectories from the database, selected based on distance from the observation. This tracking algorithm is applicable where the state evolves in a complex manner as in the eye of tropical cyclones. The proposed technique is evaluated by tracking selected cyclones from 2005 using a database of cyclone tracks from the previous 25 years.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A variant of particle filtering using historic datasets for tracking complex geospatial phenomena\",\"authors\":\"A. Panangadan, A. Talukder\",\"doi\":\"10.1145/1869790.1869824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an extension of the particle filtering algorithm that is applicable when an accurate state prediction model cannot be specified but a database of prior state evolution tracks is available. The conventional particle filtering algorithm represents the belief state as a collection of particles, where each particle is a sample from the state space. The particles are updated by applying the state space equations. In the proposed approach, each particle is an instance of a complete state trajectory, drawn from the database of historic state trajectories. An explicit state update model is not required as the trajectory represented by each particle is covers the entire modeling time period. When new observations become available, a proportion of the particles are replaced using trajectories from the database, selected based on distance from the observation. This tracking algorithm is applicable where the state evolves in a complex manner as in the eye of tropical cyclones. The proposed technique is evaluated by tracking selected cyclones from 2005 using a database of cyclone tracks from the previous 25 years.\",\"PeriodicalId\":359068,\"journal\":{\"name\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869790.1869824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了粒子滤波算法的一种扩展,该算法适用于不能确定精确的状态预测模型但有先验状态演化轨迹数据库的情况。传统的粒子滤波算法将信念状态表示为粒子的集合,其中每个粒子是来自状态空间的一个样本。通过应用状态空间方程对粒子进行更新。在提出的方法中,每个粒子都是从历史状态轨迹数据库中提取的完整状态轨迹的实例。由于每个粒子表示的轨迹覆盖了整个建模时间段,因此不需要显式的状态更新模型。当有新的观测数据可用时,根据与观测数据的距离选择数据库中的轨迹来替换一部分粒子。该跟踪算法适用于热带气旋风眼等状态演变复杂的情况。通过使用过去25年的气旋路径数据库跟踪2005年以来选定的气旋来评估所提出的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A variant of particle filtering using historic datasets for tracking complex geospatial phenomena
The paper presents an extension of the particle filtering algorithm that is applicable when an accurate state prediction model cannot be specified but a database of prior state evolution tracks is available. The conventional particle filtering algorithm represents the belief state as a collection of particles, where each particle is a sample from the state space. The particles are updated by applying the state space equations. In the proposed approach, each particle is an instance of a complete state trajectory, drawn from the database of historic state trajectories. An explicit state update model is not required as the trajectory represented by each particle is covers the entire modeling time period. When new observations become available, a proportion of the particles are replaced using trajectories from the database, selected based on distance from the observation. This tracking algorithm is applicable where the state evolves in a complex manner as in the eye of tropical cyclones. The proposed technique is evaluated by tracking selected cyclones from 2005 using a database of cyclone tracks from the previous 25 years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pai Geolocation Time Geography Stationarity Cognitive Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1