基于大数据的EWMA协方差模型的投资组合优化

Zimo Zhu, A. Thavaneswaran, Alex Paseka, J. Frank, R. Thulasiram
{"title":"基于大数据的EWMA协方差模型的投资组合优化","authors":"Zimo Zhu, A. Thavaneswaran, Alex Paseka, J. Frank, R. Thulasiram","doi":"10.1109/COMPSAC48688.2020.00-75","DOIUrl":null,"url":null,"abstract":"Recently there has been a growing interest in using machine learning methods with empirical variance covariance matrix of returns to study Markovitz portfolio optimization. The statistical technique of graphical LASSO (GL) for stock selection in the portfolio assumes that the asset returns are normally distributed, independent random variables with constant variance. In this paper sign correlations and the autocorrelations of the absolute values of the returns are used to show that the returns are non-normal with time-varying volatility. We use the recently proposed data-driven exponentially weighted moving average (DDEWMA) volatility model to estimate the covariance matrix of asset returns in Markowitz portfolio optimization. Empirical results with big data (consists of 444 stocks for a period of 7 years downloaded from Yahoo Finance) show that the proposed DDEWMA variance covariance matrix model outperforms (larger Sharpe ratio) the model with empirical variance covariance matrix.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Portfolio Optimization Using a Novel Data-Driven EWMA Covariance Model with Big Data\",\"authors\":\"Zimo Zhu, A. Thavaneswaran, Alex Paseka, J. Frank, R. Thulasiram\",\"doi\":\"10.1109/COMPSAC48688.2020.00-75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently there has been a growing interest in using machine learning methods with empirical variance covariance matrix of returns to study Markovitz portfolio optimization. The statistical technique of graphical LASSO (GL) for stock selection in the portfolio assumes that the asset returns are normally distributed, independent random variables with constant variance. In this paper sign correlations and the autocorrelations of the absolute values of the returns are used to show that the returns are non-normal with time-varying volatility. We use the recently proposed data-driven exponentially weighted moving average (DDEWMA) volatility model to estimate the covariance matrix of asset returns in Markowitz portfolio optimization. Empirical results with big data (consists of 444 stocks for a period of 7 years downloaded from Yahoo Finance) show that the proposed DDEWMA variance covariance matrix model outperforms (larger Sharpe ratio) the model with empirical variance covariance matrix.\",\"PeriodicalId\":430098,\"journal\":{\"name\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC48688.2020.00-75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.00-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来,利用具有经验方差协方差矩阵的机器学习方法来研究Markovitz投资组合优化问题越来越受到人们的关注。在投资组合选股的统计技术中,图形LASSO (GL)假设资产收益是正态分布的、具有恒定方差的独立随机变量。本文利用收益率绝对值的符号相关和自相关来说明收益率具有时变波动率的非正态性。我们使用最近提出的数据驱动指数加权移动平均(DDEWMA)波动率模型来估计马科维茨投资组合优化中资产收益的协方差矩阵。大数据(从雅虎财经下载的7年444只股票)的实证结果表明,本文提出的DDEWMA方差协方差矩阵模型优于经验方差协方差矩阵模型(夏普比更大)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Portfolio Optimization Using a Novel Data-Driven EWMA Covariance Model with Big Data
Recently there has been a growing interest in using machine learning methods with empirical variance covariance matrix of returns to study Markovitz portfolio optimization. The statistical technique of graphical LASSO (GL) for stock selection in the portfolio assumes that the asset returns are normally distributed, independent random variables with constant variance. In this paper sign correlations and the autocorrelations of the absolute values of the returns are used to show that the returns are non-normal with time-varying volatility. We use the recently proposed data-driven exponentially weighted moving average (DDEWMA) volatility model to estimate the covariance matrix of asset returns in Markowitz portfolio optimization. Empirical results with big data (consists of 444 stocks for a period of 7 years downloaded from Yahoo Finance) show that the proposed DDEWMA variance covariance matrix model outperforms (larger Sharpe ratio) the model with empirical variance covariance matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The European Concept of Smart City: A Taxonomic Analysis An Early Warning System for Hemodialysis Complications Utilizing Transfer Learning from HD IoT Dataset A Systematic Literature Review of Practical Virtual and Augmented Reality Solutions in Surgery Optimization of Parallel Applications Under CPU Overcommitment A Blockchain Token Economy Model for Financing a Decentralized Electric Vehicle Charging Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1