下一代路由器中BGP的可扩展分布式架构

K. Nguyen, B. Jaumard
{"title":"下一代路由器中BGP的可扩展分布式架构","authors":"K. Nguyen, B. Jaumard","doi":"10.1109/ICCW.2009.5207961","DOIUrl":null,"url":null,"abstract":"Current Internet is operated based on interdomain routers executing interdomain routing protocols interconnecting nodes of various autonomous systems. Due to new requirements of traffic in the core Internet, next generation routers with enhanced memory capacity and computing resources, distributed across a very high speed switching fabric are developed in order to replace the currently used interdomain routers. An essential requirement for these routers is to redesign the current routing and signaling software modules, traditionally with centralized architectures, which do not scale in order to fully exploit such an advanced router hardware architecture. This paper discusses a first distributed BGP architecture for next generation routers, aiming at increasing the scalability and resiliency. The proposed architecture is based on a set of BGP processes running on a set of control cards of a router. The distributed processes cooperate in a manner that internally exploits the distributed hardware architecture of next generation router, while maintaining the behavior of a single routing protocol process communicating with its peers in the network. The proposed architecture improves both the overall performance and the resiliency of routers in the presence of faults.","PeriodicalId":271067,"journal":{"name":"2009 IEEE International Conference on Communications Workshops","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Scalable and Distributed Architecture for BGP in Next Generation Routers\",\"authors\":\"K. Nguyen, B. Jaumard\",\"doi\":\"10.1109/ICCW.2009.5207961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current Internet is operated based on interdomain routers executing interdomain routing protocols interconnecting nodes of various autonomous systems. Due to new requirements of traffic in the core Internet, next generation routers with enhanced memory capacity and computing resources, distributed across a very high speed switching fabric are developed in order to replace the currently used interdomain routers. An essential requirement for these routers is to redesign the current routing and signaling software modules, traditionally with centralized architectures, which do not scale in order to fully exploit such an advanced router hardware architecture. This paper discusses a first distributed BGP architecture for next generation routers, aiming at increasing the scalability and resiliency. The proposed architecture is based on a set of BGP processes running on a set of control cards of a router. The distributed processes cooperate in a manner that internally exploits the distributed hardware architecture of next generation router, while maintaining the behavior of a single routing protocol process communicating with its peers in the network. The proposed architecture improves both the overall performance and the resiliency of routers in the presence of faults.\",\"PeriodicalId\":271067,\"journal\":{\"name\":\"2009 IEEE International Conference on Communications Workshops\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Communications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2009.5207961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2009.5207961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

当前的互联网是基于域间路由器运行的,这些路由器执行域间路由协议,将各种自治系统的节点互连起来。由于核心互联网对流量的新要求,为了取代目前使用的域间路由器,开发了下一代路由器,这些路由器具有增强的内存容量和计算资源,分布在非常高速的交换结构中。这些路由器的一个基本要求是重新设计当前的路由和信令软件模块,传统的集中式架构,不能扩展,以充分利用这种先进的路由器硬件架构。本文讨论了用于下一代路由器的第一种分布式BGP架构,旨在提高可扩展性和弹性。该架构基于运行在路由器控制卡上的一组BGP进程。分布式进程以一种内部利用下一代路由器的分布式硬件架构的方式进行协作,同时保持单个路由协议进程与其网络中的对等节点通信的行为。该架构既提高了路由器的整体性能,又提高了路由器在出现故障时的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Scalable and Distributed Architecture for BGP in Next Generation Routers
Current Internet is operated based on interdomain routers executing interdomain routing protocols interconnecting nodes of various autonomous systems. Due to new requirements of traffic in the core Internet, next generation routers with enhanced memory capacity and computing resources, distributed across a very high speed switching fabric are developed in order to replace the currently used interdomain routers. An essential requirement for these routers is to redesign the current routing and signaling software modules, traditionally with centralized architectures, which do not scale in order to fully exploit such an advanced router hardware architecture. This paper discusses a first distributed BGP architecture for next generation routers, aiming at increasing the scalability and resiliency. The proposed architecture is based on a set of BGP processes running on a set of control cards of a router. The distributed processes cooperate in a manner that internally exploits the distributed hardware architecture of next generation router, while maintaining the behavior of a single routing protocol process communicating with its peers in the network. The proposed architecture improves both the overall performance and the resiliency of routers in the presence of faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preserving Privacy in Assistive Technologies Multiuser MIMO-OFDMA with Different QoS Using a Prioritized Channel Adaptive Technique Energy-Efficient Multiaccess Dissemination Networks Cognitive Pilot Channel Enabling Spectrum Awareness High-Performance Indoor Localization with Full-Band GSM Fingerprints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1