机会正交化的动态空间频谱接入

Cong Shen, M. Fitz
{"title":"机会正交化的动态空间频谱接入","authors":"Cong Shen, M. Fitz","doi":"10.1109/CISS.2009.5054789","DOIUrl":null,"url":null,"abstract":"Opportunistic Spatial Orthogonalization (OSO) is a new cognitive radio scheme that allows the existence of secondary users and hence increases the system throughput, even if the primary user occupies all the frequency bands all the time. Notably, this throughput advantage is obtained without sacrificing the performance of the primary user, if the interference margin is carefully chosen. The key idea is to exploit the spatial dimensions to orthogonalize users and hence minimize interference. However, unlike the time and frequency dimensions, there is no universal basis for the set of all multi-dimensional spatial channels, which motivated the development of OSO. On one hand, OSO can be viewed as a multi-user diversity scheme that exploits the channel randomness and independence. On the other hand, OSO can be interpreted as an opportunistic interference alignment scheme, where the interference from multiple secondary users is opportunistically aligned at the direction that is orthogonal to the primary user's signal space. Throughput advantages are studied both analytically and numerically.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Dynamic spatial spectrum access with opportunistic orthogonalization\",\"authors\":\"Cong Shen, M. Fitz\",\"doi\":\"10.1109/CISS.2009.5054789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opportunistic Spatial Orthogonalization (OSO) is a new cognitive radio scheme that allows the existence of secondary users and hence increases the system throughput, even if the primary user occupies all the frequency bands all the time. Notably, this throughput advantage is obtained without sacrificing the performance of the primary user, if the interference margin is carefully chosen. The key idea is to exploit the spatial dimensions to orthogonalize users and hence minimize interference. However, unlike the time and frequency dimensions, there is no universal basis for the set of all multi-dimensional spatial channels, which motivated the development of OSO. On one hand, OSO can be viewed as a multi-user diversity scheme that exploits the channel randomness and independence. On the other hand, OSO can be interpreted as an opportunistic interference alignment scheme, where the interference from multiple secondary users is opportunistically aligned at the direction that is orthogonal to the primary user's signal space. Throughput advantages are studied both analytically and numerically.\",\"PeriodicalId\":433796,\"journal\":{\"name\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2009.5054789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

机会空间正交化(OSO)是一种新的认知无线电方案,它允许二级用户的存在,从而增加系统吞吐量,即使主用户一直占用所有频带。值得注意的是,如果仔细选择干扰余量,则在不牺牲主用户性能的情况下获得这种吞吐量优势。关键思想是利用空间维度来正交用户,从而减少干扰。然而,与时间和频率维度不同,所有多维空间信道的集合没有统一的基础,这推动了OSO的发展。一方面,OSO可以看作是一种利用信道随机性和独立性的多用户分集方案。另一方面,OSO可以被解释为机会干扰对准方案,其中来自多个辅助用户的干扰在与主用户信号空间正交的方向上机会地对准。对吞吐量优势进行了分析和数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic spatial spectrum access with opportunistic orthogonalization
Opportunistic Spatial Orthogonalization (OSO) is a new cognitive radio scheme that allows the existence of secondary users and hence increases the system throughput, even if the primary user occupies all the frequency bands all the time. Notably, this throughput advantage is obtained without sacrificing the performance of the primary user, if the interference margin is carefully chosen. The key idea is to exploit the spatial dimensions to orthogonalize users and hence minimize interference. However, unlike the time and frequency dimensions, there is no universal basis for the set of all multi-dimensional spatial channels, which motivated the development of OSO. On one hand, OSO can be viewed as a multi-user diversity scheme that exploits the channel randomness and independence. On the other hand, OSO can be interpreted as an opportunistic interference alignment scheme, where the interference from multiple secondary users is opportunistically aligned at the direction that is orthogonal to the primary user's signal space. Throughput advantages are studied both analytically and numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1