卷积网络的混合进化

Brian Cheung, Carl Sable
{"title":"卷积网络的混合进化","authors":"Brian Cheung, Carl Sable","doi":"10.1109/ICMLA.2011.73","DOIUrl":null,"url":null,"abstract":"With the increasing trend of neural network models towards larger structures with more layers, we expect a corresponding exponential increase in the number of possible architectures. In this paper, we apply a hybrid evolutionary search procedure to define the initialization and architectural parameters of convolutional networks, one of the first successful deep network models. We make use of stochastic diagonal Levenberg-Marquardt to accelerate the convergence of training, lowering the time cost of fitness evaluation. Using parameters found from the evolutionary search together with absolute value and local contrast normalization preprocessing between layers, we achieve the best known performance on several of the MNIST Variations, rectangles-image and convex image datasets.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hybrid Evolution of Convolutional Networks\",\"authors\":\"Brian Cheung, Carl Sable\",\"doi\":\"10.1109/ICMLA.2011.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing trend of neural network models towards larger structures with more layers, we expect a corresponding exponential increase in the number of possible architectures. In this paper, we apply a hybrid evolutionary search procedure to define the initialization and architectural parameters of convolutional networks, one of the first successful deep network models. We make use of stochastic diagonal Levenberg-Marquardt to accelerate the convergence of training, lowering the time cost of fitness evaluation. Using parameters found from the evolutionary search together with absolute value and local contrast normalization preprocessing between layers, we achieve the best known performance on several of the MNIST Variations, rectangles-image and convex image datasets.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

随着神经网络模型越来越趋向于更大、更多层的结构,我们预计可能的结构数量会相应呈指数增长。在本文中,我们应用混合进化搜索程序来定义卷积网络的初始化和结构参数,卷积网络是最早成功的深度网络模型之一。我们利用随机对角线Levenberg-Marquardt来加速训练的收敛,降低适应度评估的时间成本。使用从进化搜索中找到的参数以及层间的绝对值和局部对比度归一化预处理,我们在几种MNIST变量、矩形图像和凸图像数据集上实现了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Evolution of Convolutional Networks
With the increasing trend of neural network models towards larger structures with more layers, we expect a corresponding exponential increase in the number of possible architectures. In this paper, we apply a hybrid evolutionary search procedure to define the initialization and architectural parameters of convolutional networks, one of the first successful deep network models. We make use of stochastic diagonal Levenberg-Marquardt to accelerate the convergence of training, lowering the time cost of fitness evaluation. Using parameters found from the evolutionary search together with absolute value and local contrast normalization preprocessing between layers, we achieve the best known performance on several of the MNIST Variations, rectangles-image and convex image datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1