谷歌趋势数据比价格回报更具可预测性吗?

D. Challet, Ahmed Bel Hadj Ayed
{"title":"谷歌趋势数据比价格回报更具可预测性吗?","authors":"D. Challet, Ahmed Bel Hadj Ayed","doi":"10.2139/ssrn.2405804","DOIUrl":null,"url":null,"abstract":"Using non-linear machine learning methods and a proper backtest procedure, we critically examine the claim that Google Trends can predict future price returns. We first review the many potential biases that may influence backtests with this kind of data positively, the choice of keywords being by far the greatest culprit. We then argue that the real question is whether such data contain more predictability than price returns themselves: our backtest yields a performance of about 17bps per week which only weakly depends on the kind of data on which predictors are based, i.e. either past price returns or Google Trends data, or both.","PeriodicalId":414091,"journal":{"name":"Innovation & Management Science eJournal","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Do Google Trend Data Contain More Predictability than Price Returns?\",\"authors\":\"D. Challet, Ahmed Bel Hadj Ayed\",\"doi\":\"10.2139/ssrn.2405804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using non-linear machine learning methods and a proper backtest procedure, we critically examine the claim that Google Trends can predict future price returns. We first review the many potential biases that may influence backtests with this kind of data positively, the choice of keywords being by far the greatest culprit. We then argue that the real question is whether such data contain more predictability than price returns themselves: our backtest yields a performance of about 17bps per week which only weakly depends on the kind of data on which predictors are based, i.e. either past price returns or Google Trends data, or both.\",\"PeriodicalId\":414091,\"journal\":{\"name\":\"Innovation & Management Science eJournal\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovation & Management Science eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2405804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovation & Management Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2405804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

使用非线性机器学习方法和适当的回测程序,我们批判性地检验了谷歌趋势可以预测未来价格回报的说法。我们首先回顾了许多可能对这类数据的回测产生积极影响的潜在偏差,其中关键词的选择是迄今为止最大的罪魁祸首。然后我们认为,真正的问题是这些数据是否比价格回报本身包含更多的可预测性:我们的回测每周产生约17个基点的表现,这只弱依赖于预测者所基于的数据类型,即过去的价格回报或谷歌趋势数据,或两者兼而有之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do Google Trend Data Contain More Predictability than Price Returns?
Using non-linear machine learning methods and a proper backtest procedure, we critically examine the claim that Google Trends can predict future price returns. We first review the many potential biases that may influence backtests with this kind of data positively, the choice of keywords being by far the greatest culprit. We then argue that the real question is whether such data contain more predictability than price returns themselves: our backtest yields a performance of about 17bps per week which only weakly depends on the kind of data on which predictors are based, i.e. either past price returns or Google Trends data, or both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Costs of Standardization: Evidence from the Movie Industry Does Gender Affect Innovation? Evidence from Female Chief Technology Officers To Interfere or Not To Interfere: Information Revelation and Price-Setting Incentives in a Multiagent Learning Environment Innovation Contests With Risk-Averse Participants Can Deep Reinforcement Learning Improve Inventory Management? Performance on Dual Sourcing, Lost Sales and Multi-Echelon Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1