{"title":"基于神经网络的内容中心网络拥塞控制算法","authors":"Parisa Bazmi, Manijeh Keshtgary","doi":"10.14419/JACST.V3I2.3696","DOIUrl":null,"url":null,"abstract":"Communication across the Internet has transformed over the years, generated primarily by changes in the importance of content distribution. In the twenty-first century, people are more concerned with the content rather than the location of the information. Content-Centric Networking (CCN) is a new Internet architecture, which aims to access content by a name rather than the IP address of a host. Having the content, CCN which is natively pull-based functions based on the requests received from customers. It is also combined with the availability of in-network chaching. Because of the availability of in-network caching in CCN, chunks may be served by multiple sources. This multi-path transfer in CCN makes TCP-based congestion control mechanisms inefficient for CCN. In this paper a new congestion control algorithm is proposed, which is based on Neural Network prediction over content-centric networks. The designed NN is implemented in each router to predict adaptively the existence of the congestion on link given the current status of the network. The results demonstrate that the proposed congestion control algorithm can effectively improve throughput by 85.53%. This improvement is done by preventing queue overflow from happening, which will result in reductions in packet drop in the network. Keywords : Content-Centric Network, Congestion Control, Drop Prediction, Named Data Networking, Neural Network.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A neural network based congestion control algorithm for content-centric networks\",\"authors\":\"Parisa Bazmi, Manijeh Keshtgary\",\"doi\":\"10.14419/JACST.V3I2.3696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication across the Internet has transformed over the years, generated primarily by changes in the importance of content distribution. In the twenty-first century, people are more concerned with the content rather than the location of the information. Content-Centric Networking (CCN) is a new Internet architecture, which aims to access content by a name rather than the IP address of a host. Having the content, CCN which is natively pull-based functions based on the requests received from customers. It is also combined with the availability of in-network chaching. Because of the availability of in-network caching in CCN, chunks may be served by multiple sources. This multi-path transfer in CCN makes TCP-based congestion control mechanisms inefficient for CCN. In this paper a new congestion control algorithm is proposed, which is based on Neural Network prediction over content-centric networks. The designed NN is implemented in each router to predict adaptively the existence of the congestion on link given the current status of the network. The results demonstrate that the proposed congestion control algorithm can effectively improve throughput by 85.53%. This improvement is done by preventing queue overflow from happening, which will result in reductions in packet drop in the network. Keywords : Content-Centric Network, Congestion Control, Drop Prediction, Named Data Networking, Neural Network.\",\"PeriodicalId\":445404,\"journal\":{\"name\":\"Journal of Advanced Computer Science and Technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/JACST.V3I2.3696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V3I2.3696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neural network based congestion control algorithm for content-centric networks
Communication across the Internet has transformed over the years, generated primarily by changes in the importance of content distribution. In the twenty-first century, people are more concerned with the content rather than the location of the information. Content-Centric Networking (CCN) is a new Internet architecture, which aims to access content by a name rather than the IP address of a host. Having the content, CCN which is natively pull-based functions based on the requests received from customers. It is also combined with the availability of in-network chaching. Because of the availability of in-network caching in CCN, chunks may be served by multiple sources. This multi-path transfer in CCN makes TCP-based congestion control mechanisms inefficient for CCN. In this paper a new congestion control algorithm is proposed, which is based on Neural Network prediction over content-centric networks. The designed NN is implemented in each router to predict adaptively the existence of the congestion on link given the current status of the network. The results demonstrate that the proposed congestion control algorithm can effectively improve throughput by 85.53%. This improvement is done by preventing queue overflow from happening, which will result in reductions in packet drop in the network. Keywords : Content-Centric Network, Congestion Control, Drop Prediction, Named Data Networking, Neural Network.