R. Mancuso, R. Pellizzoni, Neriman Tokcan, M. Caccamo
{"title":"具有显式内存预算分配的单核等价的WCET派生","authors":"R. Mancuso, R. Pellizzoni, Neriman Tokcan, M. Caccamo","doi":"10.4230/LIPIcs.ECRTS.2017.3","DOIUrl":null,"url":null,"abstract":"In the last decade there has been a steady uptrend in the popularity of embedded multi-core platforms. This represents a turning point in the theory and implementation of real-time systems. From a real-time standpoint, however, the extensive sharing of hardware resources (e.g. caches, DRAM subsystem, I/O channels) represents a major source of unpredictability. Budget-based memory regulation (throttling) has been extensively studied to enforce a strict partitioning of the DRAM subsystem’s bandwidth. The common approach to analyze a task under memory bandwidth regulation is to consider the budget of the core where the task is executing, and assume the worst-case about the remaining cores' budgets. \n \nIn this work, we propose a novel analysis strategy to derive the WCET of a task under memory bandwidth regulation that takes into account the exact distribution of memory budgets to cores. In this sense, the proposed analysis represents a generalization of approaches that consider (i) even budget distribution across cores; and (ii) uneven but unknown (except for the core under analysis) budget assignment. By exploiting the additional piece of information, we show that it is possible to derive a more accurate WCET estimation. Our evaluations highlight that the proposed technique can reduce overestimation by 30% in average, and up to 60%, compared to the state of the art.","PeriodicalId":191379,"journal":{"name":"Euromicro Conference on Real-Time Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"WCET Derivation under Single Core Equivalence with Explicit Memory Budget Assignment\",\"authors\":\"R. Mancuso, R. Pellizzoni, Neriman Tokcan, M. Caccamo\",\"doi\":\"10.4230/LIPIcs.ECRTS.2017.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade there has been a steady uptrend in the popularity of embedded multi-core platforms. This represents a turning point in the theory and implementation of real-time systems. From a real-time standpoint, however, the extensive sharing of hardware resources (e.g. caches, DRAM subsystem, I/O channels) represents a major source of unpredictability. Budget-based memory regulation (throttling) has been extensively studied to enforce a strict partitioning of the DRAM subsystem’s bandwidth. The common approach to analyze a task under memory bandwidth regulation is to consider the budget of the core where the task is executing, and assume the worst-case about the remaining cores' budgets. \\n \\nIn this work, we propose a novel analysis strategy to derive the WCET of a task under memory bandwidth regulation that takes into account the exact distribution of memory budgets to cores. In this sense, the proposed analysis represents a generalization of approaches that consider (i) even budget distribution across cores; and (ii) uneven but unknown (except for the core under analysis) budget assignment. By exploiting the additional piece of information, we show that it is possible to derive a more accurate WCET estimation. Our evaluations highlight that the proposed technique can reduce overestimation by 30% in average, and up to 60%, compared to the state of the art.\",\"PeriodicalId\":191379,\"journal\":{\"name\":\"Euromicro Conference on Real-Time Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euromicro Conference on Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ECRTS.2017.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ECRTS.2017.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WCET Derivation under Single Core Equivalence with Explicit Memory Budget Assignment
In the last decade there has been a steady uptrend in the popularity of embedded multi-core platforms. This represents a turning point in the theory and implementation of real-time systems. From a real-time standpoint, however, the extensive sharing of hardware resources (e.g. caches, DRAM subsystem, I/O channels) represents a major source of unpredictability. Budget-based memory regulation (throttling) has been extensively studied to enforce a strict partitioning of the DRAM subsystem’s bandwidth. The common approach to analyze a task under memory bandwidth regulation is to consider the budget of the core where the task is executing, and assume the worst-case about the remaining cores' budgets.
In this work, we propose a novel analysis strategy to derive the WCET of a task under memory bandwidth regulation that takes into account the exact distribution of memory budgets to cores. In this sense, the proposed analysis represents a generalization of approaches that consider (i) even budget distribution across cores; and (ii) uneven but unknown (except for the core under analysis) budget assignment. By exploiting the additional piece of information, we show that it is possible to derive a more accurate WCET estimation. Our evaluations highlight that the proposed technique can reduce overestimation by 30% in average, and up to 60%, compared to the state of the art.