无线传感器网络中的数据约简建模

Glenn Patterson, M. Ali
{"title":"无线传感器网络中的数据约简建模","authors":"Glenn Patterson, M. Ali","doi":"10.4236/wsn.2011.38029","DOIUrl":null,"url":null,"abstract":"In this paper, we present a stochastic model for data in a Wireless Sensor Network (WSN) using random field theory. The model captures the space-time behavior of the underlying phenomenon being observed by the network. We present results regarding the size and spatial distribution of the regions of the network that sense statistically extreme values of the underlying phenomenon using the theory of extreme excursion regions. These results compliment many existing works in the literature that describe algorithms to reduce the data load, but lack an analytical approach to evaluate the size and spatial distribution of this load. We show that if only the statistically extreme data is transmitted in the network, then the data load can be significantly reduced. Finally, a simple performance model of a WSN is developed based on a collection of asynchronous M/M/1 servers that work in parallel. We derive several performance measures from this performance model. The presented results will be useful in the design of large scale sensor networks.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling of Data Reduction in Wireless Sensor Networks\",\"authors\":\"Glenn Patterson, M. Ali\",\"doi\":\"10.4236/wsn.2011.38029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a stochastic model for data in a Wireless Sensor Network (WSN) using random field theory. The model captures the space-time behavior of the underlying phenomenon being observed by the network. We present results regarding the size and spatial distribution of the regions of the network that sense statistically extreme values of the underlying phenomenon using the theory of extreme excursion regions. These results compliment many existing works in the literature that describe algorithms to reduce the data load, but lack an analytical approach to evaluate the size and spatial distribution of this load. We show that if only the statistically extreme data is transmitted in the network, then the data load can be significantly reduced. Finally, a simple performance model of a WSN is developed based on a collection of asynchronous M/M/1 servers that work in parallel. We derive several performance measures from this performance model. The presented results will be useful in the design of large scale sensor networks.\",\"PeriodicalId\":251051,\"journal\":{\"name\":\"Wirel. Sens. Netw.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wirel. Sens. Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wsn.2011.38029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Sens. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wsn.2011.38029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文利用随机场理论建立了无线传感器网络中数据的随机模型。该模型捕捉了网络观察到的潜在现象的时空行为。我们提出了关于网络区域的大小和空间分布的结果,这些区域使用极端偏移区域理论来感知潜在现象的统计极值。这些结果补充了文献中描述减少数据负载的算法的许多现有工作,但缺乏评估该负载的大小和空间分布的分析方法。我们表明,如果仅在网络中传输统计上极端的数据,则可以显着减少数据负载。最后,基于一组并行工作的异步M/M/1服务器,建立了WSN的简单性能模型。我们从这个性能模型中推导出几个性能度量。本文的研究结果对大规模传感器网络的设计具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of Data Reduction in Wireless Sensor Networks
In this paper, we present a stochastic model for data in a Wireless Sensor Network (WSN) using random field theory. The model captures the space-time behavior of the underlying phenomenon being observed by the network. We present results regarding the size and spatial distribution of the regions of the network that sense statistically extreme values of the underlying phenomenon using the theory of extreme excursion regions. These results compliment many existing works in the literature that describe algorithms to reduce the data load, but lack an analytical approach to evaluate the size and spatial distribution of this load. We show that if only the statistically extreme data is transmitted in the network, then the data load can be significantly reduced. Finally, a simple performance model of a WSN is developed based on a collection of asynchronous M/M/1 servers that work in parallel. We derive several performance measures from this performance model. The presented results will be useful in the design of large scale sensor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D DOPs for Positioning Applications Using Range Measurements An Energy-Based Stochastic Model for Wireless Sensor Networks ANCAEE: A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks Wireless Power Generation Strategy Using EAP Actuated Energy Harvester for Marine Information Acquisition Wireless Sensor Network for Monitoring Maturity Stage of Fruit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1