RMA- mt:一个用于评估MPI多线程RMA性能的基准套件

Matthew G. F. Dosanjh, Taylor L. Groves, Ryan E. Grant, R. Brightwell, P. Bridges
{"title":"RMA- mt:一个用于评估MPI多线程RMA性能的基准套件","authors":"Matthew G. F. Dosanjh, Taylor L. Groves, Ryan E. Grant, R. Brightwell, P. Bridges","doi":"10.1109/CCGrid.2016.84","DOIUrl":null,"url":null,"abstract":"Reaching Exascale will require leveraging massive parallelism while potentially leveraging asynchronous communication to help achieve scalability at such large levels of concurrency. MPI is a good candidate for providing the mechanisms to support communication at such large scales. Two existing MPI mechanisms are particularly relevant to Exascale: multi-threading, to support massive concurrency, and Remote Memory Access (RMA), to support asynchronous communication. Unfortunately, multi-threaded MPI RMA code has not been extensively studied. Part of the reason for this is that no public benchmarks or proxy applications exist to assess its performance. The contributions of this paper are the design and demonstration of the first available proxy applications and micro-benchmark suite for multi-threaded RMA in MPI, a study of multi-threaded RMA performance of different MPI implementations, and an evaluation of how these benchmarks can be used to test development for both performance and correctness.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"RMA-MT: A Benchmark Suite for Assessing MPI Multi-threaded RMA Performance\",\"authors\":\"Matthew G. F. Dosanjh, Taylor L. Groves, Ryan E. Grant, R. Brightwell, P. Bridges\",\"doi\":\"10.1109/CCGrid.2016.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reaching Exascale will require leveraging massive parallelism while potentially leveraging asynchronous communication to help achieve scalability at such large levels of concurrency. MPI is a good candidate for providing the mechanisms to support communication at such large scales. Two existing MPI mechanisms are particularly relevant to Exascale: multi-threading, to support massive concurrency, and Remote Memory Access (RMA), to support asynchronous communication. Unfortunately, multi-threaded MPI RMA code has not been extensively studied. Part of the reason for this is that no public benchmarks or proxy applications exist to assess its performance. The contributions of this paper are the design and demonstration of the first available proxy applications and micro-benchmark suite for multi-threaded RMA in MPI, a study of multi-threaded RMA performance of different MPI implementations, and an evaluation of how these benchmarks can be used to test development for both performance and correctness.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

达到Exascale将需要利用大规模并行性,同时潜在地利用异步通信来帮助在如此高的并发级别上实现可伸缩性。MPI是提供支持如此大规模通信的机制的一个很好的备选方案。现有的两种MPI机制与Exascale特别相关:多线程(支持大规模并发性)和远程内存访问(RMA)(支持异步通信)。不幸的是,多线程MPI RMA代码还没有得到广泛的研究。部分原因是没有公共基准测试或代理应用程序来评估其性能。本文的贡献是为MPI中的多线程RMA设计和演示了第一个可用的代理应用程序和微基准套件,研究了不同MPI实现的多线程RMA性能,并评估了如何使用这些基准来测试开发的性能和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RMA-MT: A Benchmark Suite for Assessing MPI Multi-threaded RMA Performance
Reaching Exascale will require leveraging massive parallelism while potentially leveraging asynchronous communication to help achieve scalability at such large levels of concurrency. MPI is a good candidate for providing the mechanisms to support communication at such large scales. Two existing MPI mechanisms are particularly relevant to Exascale: multi-threading, to support massive concurrency, and Remote Memory Access (RMA), to support asynchronous communication. Unfortunately, multi-threaded MPI RMA code has not been extensively studied. Part of the reason for this is that no public benchmarks or proxy applications exist to assess its performance. The contributions of this paper are the design and demonstration of the first available proxy applications and micro-benchmark suite for multi-threaded RMA in MPI, a study of multi-threaded RMA performance of different MPI implementations, and an evaluation of how these benchmarks can be used to test development for both performance and correctness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era DTStorage: Dynamic Tape-Based Storage for Cost-Effective and Highly-Available Streaming Service Facilitating the Execution of HPC Workloads in Colombia through the Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1