{"title":"通过新型激光工程结构对多因子抑制机理进行建模","authors":"J. Smith, R. Valizadeh, O. Malyshev","doi":"10.1109/PPC.2017.8291226","DOIUrl":null,"url":null,"abstract":"Electron multipactor is a major problem in accelerators, both in accelerating cavities associated with dark current and beam induced e-cloud problems, and in RF distribution systems leading to catastrophic damage or in mild cases performance decrease and phase shifting. Laser treatments have been shown experimentally to reduce the Secondary Electron Yield (SEY). A full understanding of the mechanism is desirable, to allow optimisation of the surface morphology. In this poster, the Particle-in-cell (PIC) framework VSim [1] is used to gain this knowledge.","PeriodicalId":247019,"journal":{"name":"2017 IEEE 21st International Conference on Pulsed Power (PPC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the mechanism of multipactor suppression through novel laser engineered structures\",\"authors\":\"J. Smith, R. Valizadeh, O. Malyshev\",\"doi\":\"10.1109/PPC.2017.8291226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electron multipactor is a major problem in accelerators, both in accelerating cavities associated with dark current and beam induced e-cloud problems, and in RF distribution systems leading to catastrophic damage or in mild cases performance decrease and phase shifting. Laser treatments have been shown experimentally to reduce the Secondary Electron Yield (SEY). A full understanding of the mechanism is desirable, to allow optimisation of the surface morphology. In this poster, the Particle-in-cell (PIC) framework VSim [1] is used to gain this knowledge.\",\"PeriodicalId\":247019,\"journal\":{\"name\":\"2017 IEEE 21st International Conference on Pulsed Power (PPC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 21st International Conference on Pulsed Power (PPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.2017.8291226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 21st International Conference on Pulsed Power (PPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2017.8291226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling the mechanism of multipactor suppression through novel laser engineered structures
Electron multipactor is a major problem in accelerators, both in accelerating cavities associated with dark current and beam induced e-cloud problems, and in RF distribution systems leading to catastrophic damage or in mild cases performance decrease and phase shifting. Laser treatments have been shown experimentally to reduce the Secondary Electron Yield (SEY). A full understanding of the mechanism is desirable, to allow optimisation of the surface morphology. In this poster, the Particle-in-cell (PIC) framework VSim [1] is used to gain this knowledge.