基于二进制结构的数据片段文件类型识别

Martin Karresand, N. Shahmehri
{"title":"基于二进制结构的数据片段文件类型识别","authors":"Martin Karresand, N. Shahmehri","doi":"10.1109/IAW.2006.1652088","DOIUrl":null,"url":null,"abstract":"Rapidly gaining information superiority is vital when fighting an enemy, but current computer forensics tools, which require file headers or a working file system to function, do not enable us to quickly map out the contents of corrupted hard disks or other fragmented storage media found at crime scenes. The lack of proper tools slows down the hunt for information, which would otherwise help in gaining the upper hand against IT based perpetrators. To address this problem, this paper presents an algorithm which allows categorization of data fragments based solely on their structure, without the need for any meta data. The algorithm is based on measuring the rate of change of the byte contents of digital media and extends the byte frequency distribution based Oscar method presented in an earlier paper. The evaluation of the new method shows a detection rate of 99.2 %, without generating any false positives, when used to scan for JPEG data. The slowest implementation of the algorithm scans a 72.2 MB file in approximately 2.5 seconds and scales linearly","PeriodicalId":326306,"journal":{"name":"2006 IEEE Information Assurance Workshop","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"File Type Identification of Data Fragments by Their Binary Structure\",\"authors\":\"Martin Karresand, N. Shahmehri\",\"doi\":\"10.1109/IAW.2006.1652088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapidly gaining information superiority is vital when fighting an enemy, but current computer forensics tools, which require file headers or a working file system to function, do not enable us to quickly map out the contents of corrupted hard disks or other fragmented storage media found at crime scenes. The lack of proper tools slows down the hunt for information, which would otherwise help in gaining the upper hand against IT based perpetrators. To address this problem, this paper presents an algorithm which allows categorization of data fragments based solely on their structure, without the need for any meta data. The algorithm is based on measuring the rate of change of the byte contents of digital media and extends the byte frequency distribution based Oscar method presented in an earlier paper. The evaluation of the new method shows a detection rate of 99.2 %, without generating any false positives, when used to scan for JPEG data. The slowest implementation of the algorithm scans a 72.2 MB file in approximately 2.5 seconds and scales linearly\",\"PeriodicalId\":326306,\"journal\":{\"name\":\"2006 IEEE Information Assurance Workshop\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Assurance Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAW.2006.1652088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2006.1652088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

摘要

在与敌人作战时,迅速获得信息优势是至关重要的,但目前的计算机取证工具需要文件头或工作文件系统才能发挥作用,这使我们无法快速绘制出在犯罪现场发现的损坏硬盘或其他碎片存储介质的内容。缺乏适当的工具会减缓对信息的搜寻,否则将有助于在对抗基于IT的犯罪者方面占上风。为了解决这个问题,本文提出了一种算法,该算法允许仅根据数据片段的结构对其进行分类,而不需要任何元数据。该算法基于测量数字媒体字节内容的变化率,扩展了前人提出的基于字节频率分布的Oscar方法。对新方法的评价表明,在对JPEG数据进行扫描时,该方法的检测率为99.2%,没有产生任何误报。该算法最慢的实现在大约2.5秒内扫描72.2 MB的文件并线性扩展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
File Type Identification of Data Fragments by Their Binary Structure
Rapidly gaining information superiority is vital when fighting an enemy, but current computer forensics tools, which require file headers or a working file system to function, do not enable us to quickly map out the contents of corrupted hard disks or other fragmented storage media found at crime scenes. The lack of proper tools slows down the hunt for information, which would otherwise help in gaining the upper hand against IT based perpetrators. To address this problem, this paper presents an algorithm which allows categorization of data fragments based solely on their structure, without the need for any meta data. The algorithm is based on measuring the rate of change of the byte contents of digital media and extends the byte frequency distribution based Oscar method presented in an earlier paper. The evaluation of the new method shows a detection rate of 99.2 %, without generating any false positives, when used to scan for JPEG data. The slowest implementation of the algorithm scans a 72.2 MB file in approximately 2.5 seconds and scales linearly
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a Threat Model for Enterprise Storage Area Networks Automatically Building an Information-Security Vulnerability Database Analyzing Attack Trees using Generalized Stochastic Petri Nets Secure State Processing Visual Reverse Turing Tests: A False Sense of Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1