{"title":"输入不确定性分析的框架","authors":"R. Barton, B. Nelson, Wei Xie","doi":"10.1109/WSC.2010.5679071","DOIUrl":null,"url":null,"abstract":"We consider the problem of producing confidence intervals for the mean response of a system represented by a stochastic simulation that is driven by input models that have been estimated from “real-world” data. Therefore, we want the confidence interval to account for both uncertainty about the input models and stochastic noise in the simulation output; standard practice only accounts for the stochastic noise. To achieve this goal we introduce metamodel-assisted bootstrapping, and illustrate its performance relative to other proposals for dealing with input uncertainty on two queueing examples.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A framework for input uncertainty analysis\",\"authors\":\"R. Barton, B. Nelson, Wei Xie\",\"doi\":\"10.1109/WSC.2010.5679071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of producing confidence intervals for the mean response of a system represented by a stochastic simulation that is driven by input models that have been estimated from “real-world” data. Therefore, we want the confidence interval to account for both uncertainty about the input models and stochastic noise in the simulation output; standard practice only accounts for the stochastic noise. To achieve this goal we introduce metamodel-assisted bootstrapping, and illustrate its performance relative to other proposals for dealing with input uncertainty on two queueing examples.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5679071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5679071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the problem of producing confidence intervals for the mean response of a system represented by a stochastic simulation that is driven by input models that have been estimated from “real-world” data. Therefore, we want the confidence interval to account for both uncertainty about the input models and stochastic noise in the simulation output; standard practice only accounts for the stochastic noise. To achieve this goal we introduce metamodel-assisted bootstrapping, and illustrate its performance relative to other proposals for dealing with input uncertainty on two queueing examples.