VegaFusion:交互式Vega可视化的自动服务器端缩放

Nicolas Kruchten, Jon Mease, Dominik Moritz
{"title":"VegaFusion:交互式Vega可视化的自动服务器端缩放","authors":"Nicolas Kruchten, Jon Mease, Dominik Moritz","doi":"10.1109/VIS54862.2022.00011","DOIUrl":null,"url":null,"abstract":"The Vega grammar has been broadly adopted by a growing ecosys-tem of browser-based visualization tools. However, the reference Vega renderer does not scale well to large datasets (e.g., millions of rows or hundreds of megabytes) because it requires the entire dataset to be loaded into browser memory. We introduce VegaFusion, which brings automatic server-side scaling to the Vega ecosystem. VegaFusion accepts generic Vega specifications and partitions the required computation between the client and an out-of-browser, natively-compiled server-side process. Large datasets can be pro-cessed server-side to avoid loading them into the browser and to take advantage of multi-threading, more powerful server hardware and caching. We demonstrate how VegaFusion can be integrated into the existing Vega ecosystem, and show that VegaFusion greatly outperforms the reference implementation. We demonstrate these benefits with VegaFusion running on the same machine as the client as well as on a remote machine.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"VegaFusion: Automatic Server-Side Scaling for Interactive Vega Visualizations\",\"authors\":\"Nicolas Kruchten, Jon Mease, Dominik Moritz\",\"doi\":\"10.1109/VIS54862.2022.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Vega grammar has been broadly adopted by a growing ecosys-tem of browser-based visualization tools. However, the reference Vega renderer does not scale well to large datasets (e.g., millions of rows or hundreds of megabytes) because it requires the entire dataset to be loaded into browser memory. We introduce VegaFusion, which brings automatic server-side scaling to the Vega ecosystem. VegaFusion accepts generic Vega specifications and partitions the required computation between the client and an out-of-browser, natively-compiled server-side process. Large datasets can be pro-cessed server-side to avoid loading them into the browser and to take advantage of multi-threading, more powerful server hardware and caching. We demonstrate how VegaFusion can be integrated into the existing Vega ecosystem, and show that VegaFusion greatly outperforms the reference implementation. We demonstrate these benefits with VegaFusion running on the same machine as the client as well as on a remote machine.\",\"PeriodicalId\":190244,\"journal\":{\"name\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS54862.2022.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Vega语法已经被越来越多的基于浏览器的可视化工具生态系统广泛采用。然而,参考Vega渲染器不能很好地扩展到大型数据集(例如,数百万行或数百兆字节),因为它需要将整个数据集加载到浏览器内存中。我们引入了VegaFusion,它为Vega生态系统带来了自动服务器端扩展。VegaFusion接受通用的Vega规范,并在客户端和浏览器外本地编译的服务器端进程之间划分所需的计算。大型数据集可以在服务器端处理,以避免将它们加载到浏览器中,并利用多线程、更强大的服务器硬件和缓存。我们演示了如何将VegaFusion集成到现有的Vega生态系统中,并展示了VegaFusion大大优于参考实现。我们通过在与客户端相同的机器上以及在远程机器上运行VegaFusion来演示这些好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VegaFusion: Automatic Server-Side Scaling for Interactive Vega Visualizations
The Vega grammar has been broadly adopted by a growing ecosys-tem of browser-based visualization tools. However, the reference Vega renderer does not scale well to large datasets (e.g., millions of rows or hundreds of megabytes) because it requires the entire dataset to be loaded into browser memory. We introduce VegaFusion, which brings automatic server-side scaling to the Vega ecosystem. VegaFusion accepts generic Vega specifications and partitions the required computation between the client and an out-of-browser, natively-compiled server-side process. Large datasets can be pro-cessed server-side to avoid loading them into the browser and to take advantage of multi-threading, more powerful server hardware and caching. We demonstrate how VegaFusion can be integrated into the existing Vega ecosystem, and show that VegaFusion greatly outperforms the reference implementation. We demonstrate these benefits with VegaFusion running on the same machine as the client as well as on a remote machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paths Through Spatial Networks Explaining Website Reliability by Visualizing Hyperlink Connectivity Volume Puzzle: visual analysis of segmented volume data with multivariate attributes VIS 2022 Program Committee The role of extended reality for planning coronary artery bypass graft surgery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1