车辆边缘节点实时交通估计

Gorkem Kar, Shubham Jain, M. Gruteser, F. Bai, R. Govindan
{"title":"车辆边缘节点实时交通估计","authors":"Gorkem Kar, Shubham Jain, M. Gruteser, F. Bai, R. Govindan","doi":"10.1145/3132211.3134461","DOIUrl":null,"url":null,"abstract":"Traffic estimation has been a long-studied problem, but prior work has mostly provided coarse estimates over large areas. This work proposes effective fine-grained traffic volume estimation using in-vehicle dashboard mounted cameras. Existing work on traffic estimation relies on static traffic cameras that are usually deployed at crowded intersections and at some traffic lights. For streets with no traffic cameras, some well-known navigation apps (e.g., Google Maps, Waze) are often used to get the traffic information but these applications depend on limited number of GPS traces to estimate speed, and therefore may not show the average speed experienced by every vehicle. Moreover, they do not give any information about the number of vehicles traveling on the road. In this work, we focus on harvesting vehicles as edge compute nodes, focusing on sensing and interpretation of traffic from live video streams. With this goal, we consider a system that uses the dash-cam video collected on a drive, and executes object detection and identification techniques on this data to detect and count vehicles. We use image processing techniques to estimate the lane of traveling and speed of vehicles in real-time. To evaluate this system, we recorded several trips on a major highway and a university road. The results show that vehicle count accuracy depends on traffic conditions heavily but even during the peak hours, we achieve more than 90% counting accuracy for the vehicles traveling in the left most lane. For the detected vehicles, results show that our speed estimation gives less than 10% error across diverse roads and traffic conditions, and over 91% lane estimation accuracy for vehicles traveling in the left most lane (i.e., the passing lane).","PeriodicalId":389022,"journal":{"name":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Real-time traffic estimation at vehicular edge nodes\",\"authors\":\"Gorkem Kar, Shubham Jain, M. Gruteser, F. Bai, R. Govindan\",\"doi\":\"10.1145/3132211.3134461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic estimation has been a long-studied problem, but prior work has mostly provided coarse estimates over large areas. This work proposes effective fine-grained traffic volume estimation using in-vehicle dashboard mounted cameras. Existing work on traffic estimation relies on static traffic cameras that are usually deployed at crowded intersections and at some traffic lights. For streets with no traffic cameras, some well-known navigation apps (e.g., Google Maps, Waze) are often used to get the traffic information but these applications depend on limited number of GPS traces to estimate speed, and therefore may not show the average speed experienced by every vehicle. Moreover, they do not give any information about the number of vehicles traveling on the road. In this work, we focus on harvesting vehicles as edge compute nodes, focusing on sensing and interpretation of traffic from live video streams. With this goal, we consider a system that uses the dash-cam video collected on a drive, and executes object detection and identification techniques on this data to detect and count vehicles. We use image processing techniques to estimate the lane of traveling and speed of vehicles in real-time. To evaluate this system, we recorded several trips on a major highway and a university road. The results show that vehicle count accuracy depends on traffic conditions heavily but even during the peak hours, we achieve more than 90% counting accuracy for the vehicles traveling in the left most lane. For the detected vehicles, results show that our speed estimation gives less than 10% error across diverse roads and traffic conditions, and over 91% lane estimation accuracy for vehicles traveling in the left most lane (i.e., the passing lane).\",\"PeriodicalId\":389022,\"journal\":{\"name\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132211.3134461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132211.3134461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

交通估计是一个长期研究的问题,但以前的工作大多是在大范围内提供粗略的估计。这项工作提出了有效的细粒度交通量估计使用车载仪表板安装的摄像头。现有的交通估计工作依赖于静态交通摄像头,这些摄像头通常部署在拥挤的十字路口和一些红绿灯处。对于没有交通摄像头的街道,一些知名的导航应用程序(例如谷歌Maps, Waze)通常用于获取交通信息,但这些应用程序依赖于有限数量的GPS轨迹来估计速度,因此可能无法显示每辆车的平均速度。此外,他们没有提供任何关于道路上行驶车辆数量的信息。在这项工作中,我们专注于收集车辆作为边缘计算节点,专注于从实时视频流中感知和解释流量。为了实现这一目标,我们考虑了一个系统,该系统使用从驱动器上收集的行车记录仪视频,并对这些数据执行目标检测和识别技术,以检测和计数车辆。我们使用图像处理技术来实时估计车辆的行驶车道和速度。为了评估这个系统,我们在一条主要高速公路和一条大学公路上记录了几次旅行。结果表明,车辆计数精度在很大程度上取决于交通状况,但即使在高峰时段,我们对行驶在最左侧车道的车辆的计数精度也达到90%以上。对于检测到的车辆,结果表明,我们的速度估计在不同的道路和交通条件下误差小于10%,对于行驶在最左边车道(即通过车道)的车辆,车道估计精度超过91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time traffic estimation at vehicular edge nodes
Traffic estimation has been a long-studied problem, but prior work has mostly provided coarse estimates over large areas. This work proposes effective fine-grained traffic volume estimation using in-vehicle dashboard mounted cameras. Existing work on traffic estimation relies on static traffic cameras that are usually deployed at crowded intersections and at some traffic lights. For streets with no traffic cameras, some well-known navigation apps (e.g., Google Maps, Waze) are often used to get the traffic information but these applications depend on limited number of GPS traces to estimate speed, and therefore may not show the average speed experienced by every vehicle. Moreover, they do not give any information about the number of vehicles traveling on the road. In this work, we focus on harvesting vehicles as edge compute nodes, focusing on sensing and interpretation of traffic from live video streams. With this goal, we consider a system that uses the dash-cam video collected on a drive, and executes object detection and identification techniques on this data to detect and count vehicles. We use image processing techniques to estimate the lane of traveling and speed of vehicles in real-time. To evaluate this system, we recorded several trips on a major highway and a university road. The results show that vehicle count accuracy depends on traffic conditions heavily but even during the peak hours, we achieve more than 90% counting accuracy for the vehicles traveling in the left most lane. For the detected vehicles, results show that our speed estimation gives less than 10% error across diverse roads and traffic conditions, and over 91% lane estimation accuracy for vehicles traveling in the left most lane (i.e., the passing lane).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High speed object tracking using edge computing: poster abstract Parkmaster: an in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments PredriveID: pre-trip driver identification from in-vehicle data Privacy-preserving of platoon-based V2V in collaborative edge: poster abstract Fast and accurate object analysis at the edge for mobile augmented reality: demo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1