{"title":"软件探测:一种用于机器表征和应用性能预测的快速方法","authors":"A. Strube, Dolores Rexachs, E. Luque","doi":"10.1109/ISPDC.2008.40","DOIUrl":null,"url":null,"abstract":"Computers perform different applications in different ways. To characterize an application performance into a machine, the usual method is a throughout execution of it. This work is a step into a synthetic probe able to characterize a master-worker application's performance in a fraction of the time required to run it entirely. This is specially important for CPU-intensive scientific applications, who runs for very long, as it makes sense that it runs as efficiently (and fast) as possible. To know how, and for how long a master-worker application is going to run can guide the decision to use this machine or not. Our software probe takes into account only the performance-relevant parts of the application, discovering a program's relevant phases. Running solely these significant phases is a powerful way to quickly characterize the application's performance on a machine. It can help to select the best computing nodes in a grid or in a multi-cluster to run this application, and even quickly predict the total execution time for this application/data set in the machine analyzed. We also present ongoing work on a fully synthetic probe generated from programs' phases.","PeriodicalId":125975,"journal":{"name":"2008 International Symposium on Parallel and Distributed Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Software probes: towards a quick method for machine characterization and application performance prediction\",\"authors\":\"A. Strube, Dolores Rexachs, E. Luque\",\"doi\":\"10.1109/ISPDC.2008.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computers perform different applications in different ways. To characterize an application performance into a machine, the usual method is a throughout execution of it. This work is a step into a synthetic probe able to characterize a master-worker application's performance in a fraction of the time required to run it entirely. This is specially important for CPU-intensive scientific applications, who runs for very long, as it makes sense that it runs as efficiently (and fast) as possible. To know how, and for how long a master-worker application is going to run can guide the decision to use this machine or not. Our software probe takes into account only the performance-relevant parts of the application, discovering a program's relevant phases. Running solely these significant phases is a powerful way to quickly characterize the application's performance on a machine. It can help to select the best computing nodes in a grid or in a multi-cluster to run this application, and even quickly predict the total execution time for this application/data set in the machine analyzed. We also present ongoing work on a fully synthetic probe generated from programs' phases.\",\"PeriodicalId\":125975,\"journal\":{\"name\":\"2008 International Symposium on Parallel and Distributed Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2008.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2008.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software probes: towards a quick method for machine characterization and application performance prediction
Computers perform different applications in different ways. To characterize an application performance into a machine, the usual method is a throughout execution of it. This work is a step into a synthetic probe able to characterize a master-worker application's performance in a fraction of the time required to run it entirely. This is specially important for CPU-intensive scientific applications, who runs for very long, as it makes sense that it runs as efficiently (and fast) as possible. To know how, and for how long a master-worker application is going to run can guide the decision to use this machine or not. Our software probe takes into account only the performance-relevant parts of the application, discovering a program's relevant phases. Running solely these significant phases is a powerful way to quickly characterize the application's performance on a machine. It can help to select the best computing nodes in a grid or in a multi-cluster to run this application, and even quickly predict the total execution time for this application/data set in the machine analyzed. We also present ongoing work on a fully synthetic probe generated from programs' phases.