D. Vlasov, R. Rybka, A. Sboev, A. Serenko, A. Minnekhanov, V. A. Demin
{"title":"具有记忆可塑性的尖峰神经网络的强化学习","authors":"D. Vlasov, R. Rybka, A. Sboev, A. Serenko, A. Minnekhanov, V. A. Demin","doi":"10.1109/DCNA56428.2022.9923314","DOIUrl":null,"url":null,"abstract":"The reinforcement learning paradigm is for the first time presented for spiking neural network architecture with memristor-based local dynamic plasticity. The models of two kinds of such plasticity are used in the simulation study of the Cartpole task. Applying the Gaussian receptive field time-encoding scheme and simple reinforcing current pulses determined by the sign of reward change, the successful learning is demonstrated for both types of memristive plasticity.","PeriodicalId":110836,"journal":{"name":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning in a spiking neural network with memristive plasticity\",\"authors\":\"D. Vlasov, R. Rybka, A. Sboev, A. Serenko, A. Minnekhanov, V. A. Demin\",\"doi\":\"10.1109/DCNA56428.2022.9923314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reinforcement learning paradigm is for the first time presented for spiking neural network architecture with memristor-based local dynamic plasticity. The models of two kinds of such plasticity are used in the simulation study of the Cartpole task. Applying the Gaussian receptive field time-encoding scheme and simple reinforcing current pulses determined by the sign of reward change, the successful learning is demonstrated for both types of memristive plasticity.\",\"PeriodicalId\":110836,\"journal\":{\"name\":\"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCNA56428.2022.9923314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCNA56428.2022.9923314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reinforcement learning in a spiking neural network with memristive plasticity
The reinforcement learning paradigm is for the first time presented for spiking neural network architecture with memristor-based local dynamic plasticity. The models of two kinds of such plasticity are used in the simulation study of the Cartpole task. Applying the Gaussian receptive field time-encoding scheme and simple reinforcing current pulses determined by the sign of reward change, the successful learning is demonstrated for both types of memristive plasticity.