基于用户聚类和回归算法的QoS预测新方法

Yuliang Shi, Kun Zhang, Bing Liu, Li-zhen Cui
{"title":"基于用户聚类和回归算法的QoS预测新方法","authors":"Yuliang Shi, Kun Zhang, Bing Liu, Li-zhen Cui","doi":"10.1109/ICWS.2011.95","DOIUrl":null,"url":null,"abstract":"QoS has become an important measure for web service selection. In this paper, we present an approach which can provide the approximate QoS value for users, and support finding the optimal web service. Firstly, it clusters the users based on location and network condition, then according to the QoS historical statistics of users in the same cluster, uses the linear regression algorithm to predict the QoS value based on invocation time and workload.","PeriodicalId":118512,"journal":{"name":"2011 IEEE International Conference on Web Services","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A New QoS Prediction Approach Based on User Clustering and Regression Algorithms\",\"authors\":\"Yuliang Shi, Kun Zhang, Bing Liu, Li-zhen Cui\",\"doi\":\"10.1109/ICWS.2011.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"QoS has become an important measure for web service selection. In this paper, we present an approach which can provide the approximate QoS value for users, and support finding the optimal web service. Firstly, it clusters the users based on location and network condition, then according to the QoS historical statistics of users in the same cluster, uses the linear regression algorithm to predict the QoS value based on invocation time and workload.\",\"PeriodicalId\":118512,\"journal\":{\"name\":\"2011 IEEE International Conference on Web Services\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Web Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2011.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2011.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

QoS已成为web服务选择的重要指标。本文提出了一种可以为用户提供近似QoS值的方法,并支持找到最优的web服务。该方法首先根据用户的位置和网络状况对用户进行聚类,然后根据同一聚类中用户的QoS历史统计数据,采用线性回归算法预测基于调用时间和工作负载的QoS值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New QoS Prediction Approach Based on User Clustering and Regression Algorithms
QoS has become an important measure for web service selection. In this paper, we present an approach which can provide the approximate QoS value for users, and support finding the optimal web service. Firstly, it clusters the users based on location and network condition, then according to the QoS historical statistics of users in the same cluster, uses the linear regression algorithm to predict the QoS value based on invocation time and workload.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selection of Composable Web Services Driven by User Requirements Progressive Reliability Forecasting of Service-Oriented Software Opportunistic Composition of Sequentially-Connected Services in Mobile Computing Environments Improving Web API Discovery by Leveraging Social Information CLAM: Cross-Layer Management of Adaptation Decisions for Service-Based Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1