基于多标签学习器和深度特征的解剖治疗化学分类(ATC)

L. Nanni, S. Brahnam, Gianluca Maguolo
{"title":"基于多标签学习器和深度特征的解剖治疗化学分类(ATC)","authors":"L. Nanni, S. Brahnam, Gianluca Maguolo","doi":"10.4018/ijncr.2020070102","DOIUrl":null,"url":null,"abstract":"Automatic anatomical therapeutic chemical (ATC) classification predicts an unknown compound's therapeutic and chemical characteristics. Predicting the organs/systems an unidentified compound will act on has the potential of expediting drug development and research. That a given compound can affect multiple organs/systems makes automatic ATC classification a complex problem. In this paper, the authors experimentally develop a multi-label ensemble for ATC prediction. The proposed approach extracts a 1D feature vector based on a compound's chemical-chemical interaction and its structural and fingerprint similarities to other compounds, as defined by the ATC coding system. This 1D vector is reshaped into 2D matrices and fed into seven pre-trained convolutional neural networks (CNN). A bidirectional long short-term memory network (BiLSTM) is trained on the 1D vector. Features extracted from both deep learners are then trained on multi-label classifiers, with results fused. The best system proposed here is shown to outperform other methods reported in the literature.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"53 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anatomical Therapeutic Chemical Classification (ATC) With Multi-Label Learners and Deep Features\",\"authors\":\"L. Nanni, S. Brahnam, Gianluca Maguolo\",\"doi\":\"10.4018/ijncr.2020070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic anatomical therapeutic chemical (ATC) classification predicts an unknown compound's therapeutic and chemical characteristics. Predicting the organs/systems an unidentified compound will act on has the potential of expediting drug development and research. That a given compound can affect multiple organs/systems makes automatic ATC classification a complex problem. In this paper, the authors experimentally develop a multi-label ensemble for ATC prediction. The proposed approach extracts a 1D feature vector based on a compound's chemical-chemical interaction and its structural and fingerprint similarities to other compounds, as defined by the ATC coding system. This 1D vector is reshaped into 2D matrices and fed into seven pre-trained convolutional neural networks (CNN). A bidirectional long short-term memory network (BiLSTM) is trained on the 1D vector. Features extracted from both deep learners are then trained on multi-label classifiers, with results fused. The best system proposed here is shown to outperform other methods reported in the literature.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"53 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijncr.2020070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2020070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动解剖治疗化学(ATC)分类预测未知化合物的治疗和化学特性。预测未知化合物将作用于的器官/系统具有加速药物开发和研究的潜力。一个给定的化合物可以影响多个器官/系统,这使得自动ATC分类成为一个复杂的问题。在本文中,作者实验开发了一个用于ATC预测的多标签集成。该方法根据ATC编码系统定义的化合物的化学-化学相互作用及其与其他化合物的结构和指纹相似性提取1D特征向量。这个一维向量被重塑成二维矩阵,并输入到七个预训练的卷积神经网络(CNN)中。在一维向量上训练双向长短期记忆网络(BiLSTM)。然后在多标签分类器上训练从两个深度学习器中提取的特征,并融合结果。这里提出的最佳系统被证明优于文献中报道的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anatomical Therapeutic Chemical Classification (ATC) With Multi-Label Learners and Deep Features
Automatic anatomical therapeutic chemical (ATC) classification predicts an unknown compound's therapeutic and chemical characteristics. Predicting the organs/systems an unidentified compound will act on has the potential of expediting drug development and research. That a given compound can affect multiple organs/systems makes automatic ATC classification a complex problem. In this paper, the authors experimentally develop a multi-label ensemble for ATC prediction. The proposed approach extracts a 1D feature vector based on a compound's chemical-chemical interaction and its structural and fingerprint similarities to other compounds, as defined by the ATC coding system. This 1D vector is reshaped into 2D matrices and fed into seven pre-trained convolutional neural networks (CNN). A bidirectional long short-term memory network (BiLSTM) is trained on the 1D vector. Features extracted from both deep learners are then trained on multi-label classifiers, with results fused. The best system proposed here is shown to outperform other methods reported in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1