{"title":"回顾GPGPU流架构的排序","authors":"D. Merrill, A. Grimshaw","doi":"10.1145/1854273.1854344","DOIUrl":null,"url":null,"abstract":"This poster presents efficient strategies for sorting large sequences of fixed-length keys (and values) using GPGPU stream processors. Compared to the state-of-the-art, our radix sorting methods exhibit speedup of at least 2x for all generations of NVIDIA GPGPUs, and up to 3.7x for current GT200-based models. Our implementations demonstrate sorting rates of 482 million key-value pairs per second, and 550 million keys per second (32-bit). For this domain of sorting problems, we believe our sorting primitive to be the fastest available for any fully-programmable microarchitecture. These results motivate a different breed of parallel primitives for GPGPU stream architectures that can better exploit the memory and computational resources while maintaining the flexibility of a reusable component. Our sorting performance is derived from a parallel scan stream primitive that has been generalized in two ways: (1) with local interfaces for producer/consumer operations (visiting logic), and (2) with interfaces for performing multiple related, concurrent prefix scans (multi-scan).","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":"{\"title\":\"Revisiting sorting for GPGPU stream architectures\",\"authors\":\"D. Merrill, A. Grimshaw\",\"doi\":\"10.1145/1854273.1854344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This poster presents efficient strategies for sorting large sequences of fixed-length keys (and values) using GPGPU stream processors. Compared to the state-of-the-art, our radix sorting methods exhibit speedup of at least 2x for all generations of NVIDIA GPGPUs, and up to 3.7x for current GT200-based models. Our implementations demonstrate sorting rates of 482 million key-value pairs per second, and 550 million keys per second (32-bit). For this domain of sorting problems, we believe our sorting primitive to be the fastest available for any fully-programmable microarchitecture. These results motivate a different breed of parallel primitives for GPGPU stream architectures that can better exploit the memory and computational resources while maintaining the flexibility of a reusable component. Our sorting performance is derived from a parallel scan stream primitive that has been generalized in two ways: (1) with local interfaces for producer/consumer operations (visiting logic), and (2) with interfaces for performing multiple related, concurrent prefix scans (multi-scan).\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"162\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This poster presents efficient strategies for sorting large sequences of fixed-length keys (and values) using GPGPU stream processors. Compared to the state-of-the-art, our radix sorting methods exhibit speedup of at least 2x for all generations of NVIDIA GPGPUs, and up to 3.7x for current GT200-based models. Our implementations demonstrate sorting rates of 482 million key-value pairs per second, and 550 million keys per second (32-bit). For this domain of sorting problems, we believe our sorting primitive to be the fastest available for any fully-programmable microarchitecture. These results motivate a different breed of parallel primitives for GPGPU stream architectures that can better exploit the memory and computational resources while maintaining the flexibility of a reusable component. Our sorting performance is derived from a parallel scan stream primitive that has been generalized in two ways: (1) with local interfaces for producer/consumer operations (visiting logic), and (2) with interfaces for performing multiple related, concurrent prefix scans (multi-scan).