基于动态Hessian矩阵的目标检测网络混合精度量化

Zerui Yang, Wen Fei, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong
{"title":"基于动态Hessian矩阵的目标检测网络混合精度量化","authors":"Zerui Yang, Wen Fei, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong","doi":"10.1109/VCIP53242.2021.9675341","DOIUrl":null,"url":null,"abstract":"Mixed-precision quantization with adaptive bitwidth allocation for neural network has achieved higher compression rate and accuracy in classification task. However, it has not been well explored for object detection networks. In this paper, we propose a novel mixed-precision quantization scheme with dynamical Hessian matrix for object detection networks. We iteratively select a layer with the lowest sensitivity based on the Hessian matrix and downgrade its precision to reach the required compression ratio. The L-BFGS algorithm is utilized for updating the Hessian matrix in each quantization iteration. Moreover, we specifically design the loss function for objection detection networks by jointly considering the quantization effects on classification and regression loss. Experimental results on RetinaNet and Faster R-CNN show that the proposed DHMQ achieves state-of-the-art performance for quantized object detec-tors.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixed-precision Quantization with Dynamical Hessian Matrix for Object Detection Network\",\"authors\":\"Zerui Yang, Wen Fei, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong\",\"doi\":\"10.1109/VCIP53242.2021.9675341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed-precision quantization with adaptive bitwidth allocation for neural network has achieved higher compression rate and accuracy in classification task. However, it has not been well explored for object detection networks. In this paper, we propose a novel mixed-precision quantization scheme with dynamical Hessian matrix for object detection networks. We iteratively select a layer with the lowest sensitivity based on the Hessian matrix and downgrade its precision to reach the required compression ratio. The L-BFGS algorithm is utilized for updating the Hessian matrix in each quantization iteration. Moreover, we specifically design the loss function for objection detection networks by jointly considering the quantization effects on classification and regression loss. Experimental results on RetinaNet and Faster R-CNN show that the proposed DHMQ achieves state-of-the-art performance for quantized object detec-tors.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经网络自适应位宽分配的混合精度量化在分类任务中获得了更高的压缩率和准确率。然而,它还没有很好地探索目标检测网络。本文提出了一种基于动态Hessian矩阵的目标检测网络混合精度量化方案。我们基于Hessian矩阵迭代选择灵敏度最低的层,并降低其精度以达到所需的压缩比。利用L-BFGS算法在每次量化迭代中更新Hessian矩阵。此外,我们结合量化对分类和回归损失的影响,专门设计了目标检测网络的损失函数。在retanet和Faster R-CNN上的实验结果表明,所提出的DHMQ实现了最先进的量化目标检测器性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixed-precision Quantization with Dynamical Hessian Matrix for Object Detection Network
Mixed-precision quantization with adaptive bitwidth allocation for neural network has achieved higher compression rate and accuracy in classification task. However, it has not been well explored for object detection networks. In this paper, we propose a novel mixed-precision quantization scheme with dynamical Hessian matrix for object detection networks. We iteratively select a layer with the lowest sensitivity based on the Hessian matrix and downgrade its precision to reach the required compression ratio. The L-BFGS algorithm is utilized for updating the Hessian matrix in each quantization iteration. Moreover, we specifically design the loss function for objection detection networks by jointly considering the quantization effects on classification and regression loss. Experimental results on RetinaNet and Faster R-CNN show that the proposed DHMQ achieves state-of-the-art performance for quantized object detec-tors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1