超声成像的去斑滤波算法和软件

C. Loizou, C. Pattichis
{"title":"超声成像的去斑滤波算法和软件","authors":"C. Loizou, C. Pattichis","doi":"10.2200/s00116ed1v01y200805ase001","DOIUrl":null,"url":null,"abstract":"Abstract It is well-known that speckle is a multiplicative noise that degrades image quality and the visual evaluation in ultrasound imaging. This necessitates the need for robust despeckling techniques for both routine clinical practice and teleconsultation. The goal for this book is to introduce the theoretical background (equations), the algorithmic steps, and the MATLAB™ code for the following group of despeckle filters: linear filtering, nonlinear filtering, anisotropic diffusion filtering and wavelet filtering. The book proposes a comparative evaluation framework of these despeckle filters based on texture analysis, image quality evaluation metrics, and visual evaluation by medical experts, in the assessment of cardiovascular ultrasound images recorded from the carotid artery. The results of our work presented in this book, suggest that the linear local statistics filter DsFlsmv, gave the best performance, followed by the nonlinear geometric filter DsFgf4d, and the linear homogeneous mask area filte...","PeriodicalId":303988,"journal":{"name":"Synthesis Lectures on Algorithms and Software in Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":"{\"title\":\"Despeckle Filtering Algorithms and Software for Ultrasound Imaging\",\"authors\":\"C. Loizou, C. Pattichis\",\"doi\":\"10.2200/s00116ed1v01y200805ase001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is well-known that speckle is a multiplicative noise that degrades image quality and the visual evaluation in ultrasound imaging. This necessitates the need for robust despeckling techniques for both routine clinical practice and teleconsultation. The goal for this book is to introduce the theoretical background (equations), the algorithmic steps, and the MATLAB™ code for the following group of despeckle filters: linear filtering, nonlinear filtering, anisotropic diffusion filtering and wavelet filtering. The book proposes a comparative evaluation framework of these despeckle filters based on texture analysis, image quality evaluation metrics, and visual evaluation by medical experts, in the assessment of cardiovascular ultrasound images recorded from the carotid artery. The results of our work presented in this book, suggest that the linear local statistics filter DsFlsmv, gave the best performance, followed by the nonlinear geometric filter DsFgf4d, and the linear homogeneous mask area filte...\",\"PeriodicalId\":303988,\"journal\":{\"name\":\"Synthesis Lectures on Algorithms and Software in Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"126\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis Lectures on Algorithms and Software in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2200/s00116ed1v01y200805ase001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis Lectures on Algorithms and Software in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2200/s00116ed1v01y200805ase001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126

摘要

摘要在超声成像中,散斑是一种乘性噪声,会降低图像质量和视觉评价。这就需要在常规临床实践和远程会诊中采用强有力的消斑技术。本书的目标是介绍理论背景(方程),算法步骤和MATLAB™代码,用于以下组去斑滤波器:线性滤波,非线性滤波,各向异性扩散滤波和小波滤波。这本书提出了一个比较的评估框架,这些去斑滤波器基于纹理分析,图像质量评价指标,并由医学专家的视觉评价,在评估从颈动脉记录的心血管超声图像。我们在本书中提出的工作结果表明,线性局部统计滤波器DsFlsmv给出了最好的性能,其次是非线性几何滤波器DsFgf4d,线性均匀掩模区域滤波器……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Despeckle Filtering Algorithms and Software for Ultrasound Imaging
Abstract It is well-known that speckle is a multiplicative noise that degrades image quality and the visual evaluation in ultrasound imaging. This necessitates the need for robust despeckling techniques for both routine clinical practice and teleconsultation. The goal for this book is to introduce the theoretical background (equations), the algorithmic steps, and the MATLAB™ code for the following group of despeckle filters: linear filtering, nonlinear filtering, anisotropic diffusion filtering and wavelet filtering. The book proposes a comparative evaluation framework of these despeckle filters based on texture analysis, image quality evaluation metrics, and visual evaluation by medical experts, in the assessment of cardiovascular ultrasound images recorded from the carotid artery. The results of our work presented in this book, suggest that the linear local statistics filter DsFlsmv, gave the best performance, followed by the nonlinear geometric filter DsFgf4d, and the linear homogeneous mask area filte...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineer Your Software! A Survey of Blur Detection and Sharpness Assessment Methods Cognitive Fusion for Target Tracking Secure Sensor Cloud Advances in Modern Blind Signal Separation Algorithms: Theory and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1