利用两两约束进行图像分类的在线码本重加权

Xin Zhao, Weiqiang Ren, Kaiqi Huang, T. Tan
{"title":"利用两两约束进行图像分类的在线码本重加权","authors":"Xin Zhao, Weiqiang Ren, Kaiqi Huang, T. Tan","doi":"10.1109/ACPR.2011.6166560","DOIUrl":null,"url":null,"abstract":"Bag-of-words (BoW) model is widely used for image classification. Recently, the framework of sparse coding and max pooling proved an effective approach for image classification. Max pooling adopts a winner-take-all strategy. Thus, it can be regarded as a codebook weighting process. The results of this process are the weights of the associated codebook. However, there are high intra-class variations and strong background clutters in many image classification tasks. The weights obtained by max pooling only have limited information. This paper presents a codebook reweighting algorithm using pairwise constraints to improve the performance of sparse coding and max pooling framework. Pairwise constraints are the natural way of encoding the relationships between pairs of images. Therefore, the reweighted codebook is more effective to describe the relevance between pairs of images. An efficient online learning algorithm is presented based on passive-aggressive training strategy. We compare our method with other state-of-the-art methods on Graz-01 & 02 datasets. Experimental results illustrate the effectiveness and efficiency of our method for image classification.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online codebook reweighting using pairwise constraints for image classification\",\"authors\":\"Xin Zhao, Weiqiang Ren, Kaiqi Huang, T. Tan\",\"doi\":\"10.1109/ACPR.2011.6166560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bag-of-words (BoW) model is widely used for image classification. Recently, the framework of sparse coding and max pooling proved an effective approach for image classification. Max pooling adopts a winner-take-all strategy. Thus, it can be regarded as a codebook weighting process. The results of this process are the weights of the associated codebook. However, there are high intra-class variations and strong background clutters in many image classification tasks. The weights obtained by max pooling only have limited information. This paper presents a codebook reweighting algorithm using pairwise constraints to improve the performance of sparse coding and max pooling framework. Pairwise constraints are the natural way of encoding the relationships between pairs of images. Therefore, the reweighted codebook is more effective to describe the relevance between pairs of images. An efficient online learning algorithm is presented based on passive-aggressive training strategy. We compare our method with other state-of-the-art methods on Graz-01 & 02 datasets. Experimental results illustrate the effectiveness and efficiency of our method for image classification.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

词袋模型(Bag-of-words, BoW)被广泛用于图像分类。近年来,稀疏编码和最大池化框架被证明是一种有效的图像分类方法。最大池采用赢者通吃的策略。因此,它可以看作是一个码本加权过程。此过程的结果是相关码本的权重。然而,在许多图像分类任务中,存在着较大的类内变异和较强的背景杂波。最大池化获得的权值信息有限。为了提高稀疏编码和最大池化框架的性能,提出了一种利用成对约束的码本重加权算法。成对约束是对图像对之间的关系进行编码的自然方式。因此,重新加权的码本可以更有效地描述图像对之间的相关性。提出了一种基于被动攻击训练策略的高效在线学习算法。我们将我们的方法与其他最先进的方法在grazi -01和02数据集上进行比较。实验结果证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online codebook reweighting using pairwise constraints for image classification
Bag-of-words (BoW) model is widely used for image classification. Recently, the framework of sparse coding and max pooling proved an effective approach for image classification. Max pooling adopts a winner-take-all strategy. Thus, it can be regarded as a codebook weighting process. The results of this process are the weights of the associated codebook. However, there are high intra-class variations and strong background clutters in many image classification tasks. The weights obtained by max pooling only have limited information. This paper presents a codebook reweighting algorithm using pairwise constraints to improve the performance of sparse coding and max pooling framework. Pairwise constraints are the natural way of encoding the relationships between pairs of images. Therefore, the reweighted codebook is more effective to describe the relevance between pairs of images. An efficient online learning algorithm is presented based on passive-aggressive training strategy. We compare our method with other state-of-the-art methods on Graz-01 & 02 datasets. Experimental results illustrate the effectiveness and efficiency of our method for image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1