基于pocs的BDCT压缩图像伪影减少方法

J. Zou, Hong Yan
{"title":"基于pocs的BDCT压缩图像伪影减少方法","authors":"J. Zou, Hong Yan","doi":"10.1109/ICPR.2002.1048286","DOIUrl":null,"url":null,"abstract":"The theory of projection onto convex sets (POCS) is applied to reduce blocking artifacts in compressed images coded by the block discrete cosine transform (BDCT). An image before compression is simulated by a triangular mesh, which is the basis of a proposed smoothness constraint set. The mesh is constructed by dividing each block into a set of triangles. The proposed method outperforms four existing methods subjectively and objectively.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A POCS-based method for reducing artifacts in BDCT compressed images\",\"authors\":\"J. Zou, Hong Yan\",\"doi\":\"10.1109/ICPR.2002.1048286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of projection onto convex sets (POCS) is applied to reduce blocking artifacts in compressed images coded by the block discrete cosine transform (BDCT). An image before compression is simulated by a triangular mesh, which is the basis of a proposed smoothness constraint set. The mesh is constructed by dividing each block into a set of triangles. The proposed method outperforms four existing methods subjectively and objectively.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

应用凸集投影理论(POCS)对块离散余弦变换(BDCT)编码的压缩图像进行块伪影的去除。用三角形网格模拟压缩前的图像,这是提出的平滑约束集的基础。网格是通过将每个块划分为一组三角形来构建的。该方法在主观上和客观上都优于现有的四种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A POCS-based method for reducing artifacts in BDCT compressed images
The theory of projection onto convex sets (POCS) is applied to reduce blocking artifacts in compressed images coded by the block discrete cosine transform (BDCT). An image before compression is simulated by a triangular mesh, which is the basis of a proposed smoothness constraint set. The mesh is constructed by dividing each block into a set of triangles. The proposed method outperforms four existing methods subjectively and objectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1