LPCC和MFCC特征及GMM和GMM- ubm模型在有限数据说话人验证中的比较

Jayanthi Kumari, H. S. Jayanna
{"title":"LPCC和MFCC特征及GMM和GMM- ubm模型在有限数据说话人验证中的比较","authors":"Jayanthi Kumari, H. S. Jayanna","doi":"10.1109/ICCIC.2014.7238329","DOIUrl":null,"url":null,"abstract":"This work address text-independent speaker verification with the constraint of limited data (<;15 seconds). The existing techniques for speaker verification work well for sufficient data (>1 minute). Developing techniques for verifying the speakers for limited data condition is a challenging issue since data available of speakers is very small nowadays. This is because people reluctant to give more data. In this work to extract features of speech signal Mel-Frequency Cepstral Coefficients (MFCC) and Linear Prediction Cepstral Coefficients (LPCC) are used. The extracted features are modeled using Gaussian Mixture Model (GMM) and GMM-Universal Background Model (UBM) modeling techniques. The NIST-2003 database is used to carry-out the experiments. The experiments are evaluated for limited amount of training and testing speech data. The experimental observation indicates that the Equal Error Rate of LPCC features is less as compared to MFCC for limited data.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Comparison of LPCC and MFCC features and GMM and GMM-UBM modeling for limited data speaker verification\",\"authors\":\"Jayanthi Kumari, H. S. Jayanna\",\"doi\":\"10.1109/ICCIC.2014.7238329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work address text-independent speaker verification with the constraint of limited data (<;15 seconds). The existing techniques for speaker verification work well for sufficient data (>1 minute). Developing techniques for verifying the speakers for limited data condition is a challenging issue since data available of speakers is very small nowadays. This is because people reluctant to give more data. In this work to extract features of speech signal Mel-Frequency Cepstral Coefficients (MFCC) and Linear Prediction Cepstral Coefficients (LPCC) are used. The extracted features are modeled using Gaussian Mixture Model (GMM) and GMM-Universal Background Model (UBM) modeling techniques. The NIST-2003 database is used to carry-out the experiments. The experiments are evaluated for limited amount of training and testing speech data. The experimental observation indicates that the Equal Error Rate of LPCC features is less as compared to MFCC for limited data.\",\"PeriodicalId\":187874,\"journal\":{\"name\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIC.2014.7238329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本研究解决了在有限数据(1分钟)约束下的文本无关说话人验证问题。由于目前扬声器的可用数据非常少,因此开发有限数据条件下的扬声器验证技术是一个具有挑战性的问题。这是因为人们不愿意提供更多的数据。本文采用频率倒谱系数(MFCC)和线性预测倒谱系数(LPCC)提取语音信号的特征。利用高斯混合模型(GMM)和GMM-通用背景模型(UBM)建模技术对提取的特征进行建模。实验采用NIST-2003数据库进行。实验是针对有限的训练和测试语音数据进行评估的。实验观察表明,在有限的数据条件下,LPCC特征的等错误率比MFCC要小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of LPCC and MFCC features and GMM and GMM-UBM modeling for limited data speaker verification
This work address text-independent speaker verification with the constraint of limited data (<;15 seconds). The existing techniques for speaker verification work well for sufficient data (>1 minute). Developing techniques for verifying the speakers for limited data condition is a challenging issue since data available of speakers is very small nowadays. This is because people reluctant to give more data. In this work to extract features of speech signal Mel-Frequency Cepstral Coefficients (MFCC) and Linear Prediction Cepstral Coefficients (LPCC) are used. The extracted features are modeled using Gaussian Mixture Model (GMM) and GMM-Universal Background Model (UBM) modeling techniques. The NIST-2003 database is used to carry-out the experiments. The experiments are evaluated for limited amount of training and testing speech data. The experimental observation indicates that the Equal Error Rate of LPCC features is less as compared to MFCC for limited data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation control of three area hydro-thermal power systems with electric and mechanical governor Analysis of AQM router of network supporting multiple TCP flows Data analytic engineering and its application in earthquake engineering: An overview Comparative analysis of digital image stabilization by using empirical mode decomposition methods Analytical approach towards packet drop attacks in mobile ad-hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1