基于离散小波变换和卡尔曼滤波的脑电信号眼部伪影去除方法

Yan Chen, Qinglin Zhao, Bin Hu, Jianpeng Li, Hua Jiang, Wenhua Lin, Yang Li, Shuangshuang Zhou, Hong Peng
{"title":"基于离散小波变换和卡尔曼滤波的脑电信号眼部伪影去除方法","authors":"Yan Chen, Qinglin Zhao, Bin Hu, Jianpeng Li, Hua Jiang, Wenhua Lin, Yang Li, Shuangshuang Zhou, Hong Peng","doi":"10.1109/BIBM.2016.7822742","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) is a noninvasive method to record electrical activity of brain and it has been used extensively in research of brain function due to its high time resolution. However raw EEG is a mixture of signals, which contains noises such as Ocular Artifact (OA) that is irrelevant to the cognitive function of brain. To remove OAs from EEG, many methods have been proposed, such as Independent Components Analysis (ICA), Discrete Wavelet Transform (DWT), Adaptive Noise Cancellation (ANC) and Wavelet Packet Transform (WPT). In this paper, we present a novel hybrid de-noising method which uses Discrete Wavelet Transform (DWT) and Kalman Filtering to remove OAs in EEG. Firstly, we used this method on simulated data. The Mean Squared Error (MSE) of DWT-Kalman method was 0.0017, significantly lower compared to results using WPT-ICA and DWT-ANC, which were 0.0468 and 0.0052, respectively. Meanwhile, the Mean Absolute Error (MAE) using DWT-Kalman achieved an average of 0.0052, which also performed better than WPT-ICA and DWT-ANC, which were 0.0218 and 0.0115, respectively. Then we applied the proposed approach to the raw data collected by our prototype three-channel EEG collector and 64-channel Braincap from BRAIN PRODUCTS. On both data, our method achieved satisfying results. This method does not rely on any particular electrode or the number of electrodes in certain system, so it is recommended for ubiquitous applications.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A method of removing Ocular Artifacts from EEG using Discrete Wavelet Transform and Kalman Filtering\",\"authors\":\"Yan Chen, Qinglin Zhao, Bin Hu, Jianpeng Li, Hua Jiang, Wenhua Lin, Yang Li, Shuangshuang Zhou, Hong Peng\",\"doi\":\"10.1109/BIBM.2016.7822742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram (EEG) is a noninvasive method to record electrical activity of brain and it has been used extensively in research of brain function due to its high time resolution. However raw EEG is a mixture of signals, which contains noises such as Ocular Artifact (OA) that is irrelevant to the cognitive function of brain. To remove OAs from EEG, many methods have been proposed, such as Independent Components Analysis (ICA), Discrete Wavelet Transform (DWT), Adaptive Noise Cancellation (ANC) and Wavelet Packet Transform (WPT). In this paper, we present a novel hybrid de-noising method which uses Discrete Wavelet Transform (DWT) and Kalman Filtering to remove OAs in EEG. Firstly, we used this method on simulated data. The Mean Squared Error (MSE) of DWT-Kalman method was 0.0017, significantly lower compared to results using WPT-ICA and DWT-ANC, which were 0.0468 and 0.0052, respectively. Meanwhile, the Mean Absolute Error (MAE) using DWT-Kalman achieved an average of 0.0052, which also performed better than WPT-ICA and DWT-ANC, which were 0.0218 and 0.0115, respectively. Then we applied the proposed approach to the raw data collected by our prototype three-channel EEG collector and 64-channel Braincap from BRAIN PRODUCTS. On both data, our method achieved satisfying results. This method does not rely on any particular electrode or the number of electrodes in certain system, so it is recommended for ubiquitous applications.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

脑电图(EEG)是一种记录脑电活动的无创方法,由于其高时间分辨率,在脑功能研究中得到了广泛的应用。然而,原始脑电图是一种混合信号,其中包含与大脑认知功能无关的噪声,如眼伪影(OA)。为了消除脑电信号中的噪声,人们提出了许多方法,如独立分量分析(ICA)、离散小波变换(DWT)、自适应噪声消除(ANC)和小波包变换(WPT)。本文提出了一种基于离散小波变换和卡尔曼滤波的混合去噪方法。首先,我们将该方法应用于模拟数据。DWT-Kalman方法的均方误差(MSE)为0.0017,显著低于WPT-ICA和DWT-ANC方法的结果(分别为0.0468和0.0052)。同时,使用DWT-Kalman的平均绝对误差(Mean Absolute Error, MAE)平均为0.0052,也优于WPT-ICA和DWT-ANC,分别为0.0218和0.0115。然后,我们将所提出的方法应用于我们的原型三通道EEG采集器和来自BRAIN PRODUCTS的64通道Braincap收集的原始数据。在这两个数据上,我们的方法都取得了令人满意的结果。该方法不依赖于任何特定的电极或特定系统中电极的数量,因此推荐用于普遍应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method of removing Ocular Artifacts from EEG using Discrete Wavelet Transform and Kalman Filtering
Electroencephalogram (EEG) is a noninvasive method to record electrical activity of brain and it has been used extensively in research of brain function due to its high time resolution. However raw EEG is a mixture of signals, which contains noises such as Ocular Artifact (OA) that is irrelevant to the cognitive function of brain. To remove OAs from EEG, many methods have been proposed, such as Independent Components Analysis (ICA), Discrete Wavelet Transform (DWT), Adaptive Noise Cancellation (ANC) and Wavelet Packet Transform (WPT). In this paper, we present a novel hybrid de-noising method which uses Discrete Wavelet Transform (DWT) and Kalman Filtering to remove OAs in EEG. Firstly, we used this method on simulated data. The Mean Squared Error (MSE) of DWT-Kalman method was 0.0017, significantly lower compared to results using WPT-ICA and DWT-ANC, which were 0.0468 and 0.0052, respectively. Meanwhile, the Mean Absolute Error (MAE) using DWT-Kalman achieved an average of 0.0052, which also performed better than WPT-ICA and DWT-ANC, which were 0.0218 and 0.0115, respectively. Then we applied the proposed approach to the raw data collected by our prototype three-channel EEG collector and 64-channel Braincap from BRAIN PRODUCTS. On both data, our method achieved satisfying results. This method does not rely on any particular electrode or the number of electrodes in certain system, so it is recommended for ubiquitous applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1