{"title":"一种利用交替稳定遗忘估计非线性状态空间模型时变噪声参数的rao - blackwell化粒子滤波器","authors":"Milan Papez","doi":"10.1109/ISSPIT.2016.7886040","DOIUrl":null,"url":null,"abstract":"The identification of slowly-varying noise parameters in non-linear state-space models constitutes a long-standing problem. The present paper addresses this task using the Bayesian framework and sequential Monte Carlo (SMC) methodology. The proposed approach utilizes an algebraic structure of the model so that the Rao-Blackwellization of the parameters can be performed, thus involving a finite-dimensional sufficient statistic for each particle trajectory into the resulting algorithm. However, relying on standard SMC methods, such techniques are known to suffer from the particle path degeneracy problem. To counteract this issue, it is proposed to use alternative stabilized forgetting, which compensates for the incomplete knowledge of a model of parameter variations by finding a compromise between possible predictive densities of the parameters. An experimental study proves the efficiency of the introduced Rao-Blackwellized particle filter (RBPF) compared to some recently proposed approaches.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Rao-Blackwellized particle filter to estimate the time-varying noise parameters in non-linear state-space models using alternative stabilized forgetting\",\"authors\":\"Milan Papez\",\"doi\":\"10.1109/ISSPIT.2016.7886040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of slowly-varying noise parameters in non-linear state-space models constitutes a long-standing problem. The present paper addresses this task using the Bayesian framework and sequential Monte Carlo (SMC) methodology. The proposed approach utilizes an algebraic structure of the model so that the Rao-Blackwellization of the parameters can be performed, thus involving a finite-dimensional sufficient statistic for each particle trajectory into the resulting algorithm. However, relying on standard SMC methods, such techniques are known to suffer from the particle path degeneracy problem. To counteract this issue, it is proposed to use alternative stabilized forgetting, which compensates for the incomplete knowledge of a model of parameter variations by finding a compromise between possible predictive densities of the parameters. An experimental study proves the efficiency of the introduced Rao-Blackwellized particle filter (RBPF) compared to some recently proposed approaches.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Rao-Blackwellized particle filter to estimate the time-varying noise parameters in non-linear state-space models using alternative stabilized forgetting
The identification of slowly-varying noise parameters in non-linear state-space models constitutes a long-standing problem. The present paper addresses this task using the Bayesian framework and sequential Monte Carlo (SMC) methodology. The proposed approach utilizes an algebraic structure of the model so that the Rao-Blackwellization of the parameters can be performed, thus involving a finite-dimensional sufficient statistic for each particle trajectory into the resulting algorithm. However, relying on standard SMC methods, such techniques are known to suffer from the particle path degeneracy problem. To counteract this issue, it is proposed to use alternative stabilized forgetting, which compensates for the incomplete knowledge of a model of parameter variations by finding a compromise between possible predictive densities of the parameters. An experimental study proves the efficiency of the introduced Rao-Blackwellized particle filter (RBPF) compared to some recently proposed approaches.