{"title":"支持向量机的切距离核","authors":"B. Haasdonk, Daniel Keysers","doi":"10.1109/ICPR.2002.1048439","DOIUrl":null,"url":null,"abstract":"When dealing with pattern recognition problems one encounters different types of a-priori knowledge. It is important to incorporate such knowledge into the classification method at hand. A very common type of a-priori knowledge is transformation invariance of the input data, e.g. geometric transformations of image-data like shifts, scaling etc. Distance based classification methods can make use of this by a modified distance measure called tangent distance. We introduce a new class of kernels for support vector machines which incorporate tangent distance and therefore are applicable in cases where such transformation invariances are known. We report experimental results which show that the performance of our method is comparable to other state-of-the-art methods, while problems of existing ones are avoided.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Tangent distance kernels for support vector machines\",\"authors\":\"B. Haasdonk, Daniel Keysers\",\"doi\":\"10.1109/ICPR.2002.1048439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When dealing with pattern recognition problems one encounters different types of a-priori knowledge. It is important to incorporate such knowledge into the classification method at hand. A very common type of a-priori knowledge is transformation invariance of the input data, e.g. geometric transformations of image-data like shifts, scaling etc. Distance based classification methods can make use of this by a modified distance measure called tangent distance. We introduce a new class of kernels for support vector machines which incorporate tangent distance and therefore are applicable in cases where such transformation invariances are known. We report experimental results which show that the performance of our method is comparable to other state-of-the-art methods, while problems of existing ones are avoided.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tangent distance kernels for support vector machines
When dealing with pattern recognition problems one encounters different types of a-priori knowledge. It is important to incorporate such knowledge into the classification method at hand. A very common type of a-priori knowledge is transformation invariance of the input data, e.g. geometric transformations of image-data like shifts, scaling etc. Distance based classification methods can make use of this by a modified distance measure called tangent distance. We introduce a new class of kernels for support vector machines which incorporate tangent distance and therefore are applicable in cases where such transformation invariances are known. We report experimental results which show that the performance of our method is comparable to other state-of-the-art methods, while problems of existing ones are avoided.