重新访问了多目标粒子滤波

D. Kim, B. Vo, B. Vo
{"title":"重新访问了多目标粒子滤波","authors":"D. Kim, B. Vo, B. Vo","doi":"10.1109/ICCAIS.2016.7822433","DOIUrl":null,"url":null,"abstract":"Instead of the filtering density, we are interested in the entire posterior density that describes the random set of object trajectories. So far only Markov Chain Monte Carlo (MCMC) technique have been proposed to approximate the posterior distribution of the set of trajectories. Using labeled random finite set we show how the classical multi-object particle filter (a direct generalisation of the standard particle filter to the multi-object case) can be used to recursively compute posterior distribution of the set of trajectories. The result is a generic Bayesian multi-object tracker that does not require re-computing the posterior at every time step nor running a long Markov chain, and is much more efficient than the MCMC approximations.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-object particle filter revisited\",\"authors\":\"D. Kim, B. Vo, B. Vo\",\"doi\":\"10.1109/ICCAIS.2016.7822433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instead of the filtering density, we are interested in the entire posterior density that describes the random set of object trajectories. So far only Markov Chain Monte Carlo (MCMC) technique have been proposed to approximate the posterior distribution of the set of trajectories. Using labeled random finite set we show how the classical multi-object particle filter (a direct generalisation of the standard particle filter to the multi-object case) can be used to recursively compute posterior distribution of the set of trajectories. The result is a generic Bayesian multi-object tracker that does not require re-computing the posterior at every time step nor running a long Markov chain, and is much more efficient than the MCMC approximations.\",\"PeriodicalId\":407031,\"journal\":{\"name\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2016.7822433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们感兴趣的不是滤波密度,而是描述随机物体轨迹集的整个后验密度。到目前为止,只有马尔可夫链蒙特卡罗(MCMC)技术被提出来近似轨迹集的后验分布。使用标记的随机有限集,我们展示了如何使用经典的多目标粒子滤波器(标准粒子滤波器对多目标情况的直接推广)来递归地计算轨迹集的后验分布。结果是一个通用的贝叶斯多目标跟踪器,它不需要在每个时间步重新计算后验,也不需要运行长马尔可夫链,并且比MCMC近似更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-object particle filter revisited
Instead of the filtering density, we are interested in the entire posterior density that describes the random set of object trajectories. So far only Markov Chain Monte Carlo (MCMC) technique have been proposed to approximate the posterior distribution of the set of trajectories. Using labeled random finite set we show how the classical multi-object particle filter (a direct generalisation of the standard particle filter to the multi-object case) can be used to recursively compute posterior distribution of the set of trajectories. The result is a generic Bayesian multi-object tracker that does not require re-computing the posterior at every time step nor running a long Markov chain, and is much more efficient than the MCMC approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple model box-particle cardinality balanced multi-target multi-Bernoulli filter for multiple maneuvering targets tracking A new modelling and identification approach for guaranteed inclusion of a voltage source inverter's output voltages Multi region segmentation algorithm based on edge preserving for molten pool image Parameter weighting for multi-dimensional fuzzy inference systems Conditional marked point process-based crowd counting in sparsely and moderately crowded scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1