Fernando Gutiérrez Pórtela, Florina Almenares Mendoza, Liliana Benavides
{"title":"有监督和无监督机器学习技术在入侵检测中的性能评估","authors":"Fernando Gutiérrez Pórtela, Florina Almenares Mendoza, Liliana Benavides","doi":"10.1109/iCASAT48251.2019.9069538","DOIUrl":null,"url":null,"abstract":"machine learning techniques are widely used in the research for intelligent solutions anomalies detection on different computers and communications systems, which have allowed to modernize the intrusion detection systems, to ensure data privacy. For that, this paper evaluates the performance of some supervised (i.e., KNN and SVM) and unsupervised (i.e., Isolation Forest and K-Means) algorithms, for intrusion detection, using data set UNSW-NB12. The results show that the supervised algorithm SVM gaussiana fine, obtained 92% in accuracy, indicating the ability to correctly classify normal and abnormal data. With regard to the unsupervised algorithms, the K-Means algorithm groups the data together correctly and allows the appropriate number of groups to be clearly defined; however, this data set is highly agglomerated. For Isolation Forest, despite being a robust algorithm for the separation of atypical values, it presented difficulty for it. Finally, it should be made clear that not all methods of detecting anomalies by distance work properly for all data sets.","PeriodicalId":178628,"journal":{"name":"2019 IEEE International Conference on Applied Science and Advanced Technology (iCASAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of the performance of supervised and unsupervised Machine learning techniques for intrusion detection\",\"authors\":\"Fernando Gutiérrez Pórtela, Florina Almenares Mendoza, Liliana Benavides\",\"doi\":\"10.1109/iCASAT48251.2019.9069538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"machine learning techniques are widely used in the research for intelligent solutions anomalies detection on different computers and communications systems, which have allowed to modernize the intrusion detection systems, to ensure data privacy. For that, this paper evaluates the performance of some supervised (i.e., KNN and SVM) and unsupervised (i.e., Isolation Forest and K-Means) algorithms, for intrusion detection, using data set UNSW-NB12. The results show that the supervised algorithm SVM gaussiana fine, obtained 92% in accuracy, indicating the ability to correctly classify normal and abnormal data. With regard to the unsupervised algorithms, the K-Means algorithm groups the data together correctly and allows the appropriate number of groups to be clearly defined; however, this data set is highly agglomerated. For Isolation Forest, despite being a robust algorithm for the separation of atypical values, it presented difficulty for it. Finally, it should be made clear that not all methods of detecting anomalies by distance work properly for all data sets.\",\"PeriodicalId\":178628,\"journal\":{\"name\":\"2019 IEEE International Conference on Applied Science and Advanced Technology (iCASAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Applied Science and Advanced Technology (iCASAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCASAT48251.2019.9069538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Applied Science and Advanced Technology (iCASAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCASAT48251.2019.9069538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of the performance of supervised and unsupervised Machine learning techniques for intrusion detection
machine learning techniques are widely used in the research for intelligent solutions anomalies detection on different computers and communications systems, which have allowed to modernize the intrusion detection systems, to ensure data privacy. For that, this paper evaluates the performance of some supervised (i.e., KNN and SVM) and unsupervised (i.e., Isolation Forest and K-Means) algorithms, for intrusion detection, using data set UNSW-NB12. The results show that the supervised algorithm SVM gaussiana fine, obtained 92% in accuracy, indicating the ability to correctly classify normal and abnormal data. With regard to the unsupervised algorithms, the K-Means algorithm groups the data together correctly and allows the appropriate number of groups to be clearly defined; however, this data set is highly agglomerated. For Isolation Forest, despite being a robust algorithm for the separation of atypical values, it presented difficulty for it. Finally, it should be made clear that not all methods of detecting anomalies by distance work properly for all data sets.