基于深度学习的对抗和无意碰撞检测

H. Nguyen, T. Vo-Huu, Triet Vo Huu, G. Noubir
{"title":"基于深度学习的对抗和无意碰撞检测","authors":"H. Nguyen, T. Vo-Huu, Triet Vo Huu, G. Noubir","doi":"10.1145/3324921.3328784","DOIUrl":null,"url":null,"abstract":"We introduce a set of techniques to achieve transfer learning from computer vision to RF spectrum analysis. In this paper, we demonstrate the usefulness of this approach to scale the learning, accuracy, and efficiency of detection of adversarial and unintentional communications collisions using VGG-16. We achieve high accuracy (94% collisions detected) on a DARPA Spectrum Collaboration Challenge (SC2) dataset.","PeriodicalId":435733,"journal":{"name":"Proceedings of the ACM Workshop on Wireless Security and Machine Learning","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards Adversarial and Unintentional Collisions Detection Using Deep Learning\",\"authors\":\"H. Nguyen, T. Vo-Huu, Triet Vo Huu, G. Noubir\",\"doi\":\"10.1145/3324921.3328784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a set of techniques to achieve transfer learning from computer vision to RF spectrum analysis. In this paper, we demonstrate the usefulness of this approach to scale the learning, accuracy, and efficiency of detection of adversarial and unintentional communications collisions using VGG-16. We achieve high accuracy (94% collisions detected) on a DARPA Spectrum Collaboration Challenge (SC2) dataset.\",\"PeriodicalId\":435733,\"journal\":{\"name\":\"Proceedings of the ACM Workshop on Wireless Security and Machine Learning\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Workshop on Wireless Security and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324921.3328784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324921.3328784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们介绍了一套技术来实现从计算机视觉到射频频谱分析的迁移学习。在本文中,我们证明了这种方法在使用VGG-16扩展对抗性和非故意通信碰撞检测的学习,准确性和效率方面的有效性。我们在DARPA频谱协作挑战(SC2)数据集上实现了高精度(检测到94%的碰撞)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Adversarial and Unintentional Collisions Detection Using Deep Learning
We introduce a set of techniques to achieve transfer learning from computer vision to RF spectrum analysis. In this paper, we demonstrate the usefulness of this approach to scale the learning, accuracy, and efficiency of detection of adversarial and unintentional communications collisions using VGG-16. We achieve high accuracy (94% collisions detected) on a DARPA Spectrum Collaboration Challenge (SC2) dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RAPID: Real-time Anomaly-based Preventive Intrusion Detection Targeted Adversarial Examples Against RF Deep Classifiers Efficient Power Adaptation against Deep Learning Based Predictive Adversaries Detecting Drones Status via Encrypted Traffic Analysis Machine Learning-based Prevention of Battery-oriented Illegitimate Task Injection in Mobile Crowdsensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1