M. Kantner, U. Bandelow, T. Koprucki, J. Schulze, A. Strittmatter, H. Wunsche
{"title":"通过氧化约束的pn二极管注入单量子点的电流","authors":"M. Kantner, U. Bandelow, T. Koprucki, J. Schulze, A. Strittmatter, H. Wunsche","doi":"10.1109/NUSOD.2016.7547002","DOIUrl":null,"url":null,"abstract":"Current injection into single quantum dots embedded in vertical pn-diodes featuring oxide apertures is essential to the technological realization of single-photon sources. This requires efficient electrical pumping of sub-micron sized regions under pulsed excitation to achieve control of the carrier population of the desired quantum dots. We show experimental and theoretical evidence for a rapid lateral spreading of the carriers after passing the oxide aperture in the conventional p-i-n-design in the low-injection regime suitable for single-photon emitters. By an alternative design employing p-doping up to the oxide aperture the current spreading can be suppressed resulting in an enhanced current confinement and increased injection efficiencies.","PeriodicalId":425705,"journal":{"name":"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On current injection into single quantum dots through oxide-confined pn-diodes\",\"authors\":\"M. Kantner, U. Bandelow, T. Koprucki, J. Schulze, A. Strittmatter, H. Wunsche\",\"doi\":\"10.1109/NUSOD.2016.7547002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current injection into single quantum dots embedded in vertical pn-diodes featuring oxide apertures is essential to the technological realization of single-photon sources. This requires efficient electrical pumping of sub-micron sized regions under pulsed excitation to achieve control of the carrier population of the desired quantum dots. We show experimental and theoretical evidence for a rapid lateral spreading of the carriers after passing the oxide aperture in the conventional p-i-n-design in the low-injection regime suitable for single-photon emitters. By an alternative design employing p-doping up to the oxide aperture the current spreading can be suppressed resulting in an enhanced current confinement and increased injection efficiencies.\",\"PeriodicalId\":425705,\"journal\":{\"name\":\"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2016.7547002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2016.7547002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On current injection into single quantum dots through oxide-confined pn-diodes
Current injection into single quantum dots embedded in vertical pn-diodes featuring oxide apertures is essential to the technological realization of single-photon sources. This requires efficient electrical pumping of sub-micron sized regions under pulsed excitation to achieve control of the carrier population of the desired quantum dots. We show experimental and theoretical evidence for a rapid lateral spreading of the carriers after passing the oxide aperture in the conventional p-i-n-design in the low-injection regime suitable for single-photon emitters. By an alternative design employing p-doping up to the oxide aperture the current spreading can be suppressed resulting in an enhanced current confinement and increased injection efficiencies.