基于仿真的6自由度大载荷工业机器人串级PID与RISE控制器性能比较

Geonhyup Lee, Amre Eizad, Hosu Lee, Sanghun Pyo, Jungwon Yoon
{"title":"基于仿真的6自由度大载荷工业机器人串级PID与RISE控制器性能比较","authors":"Geonhyup Lee, Amre Eizad, Hosu Lee, Sanghun Pyo, Jungwon Yoon","doi":"10.1109/UR49135.2020.9144847","DOIUrl":null,"url":null,"abstract":"This paper presents a performance comparison of the robust integral of sign of error (RISE) controller with the cascade PID controller for the control of a 6-DOF heavy payload industrial robot. The 6-DOF heavy payload industrial robot is a highly nonlinear system. In this research, the dynamic simulation software ADAMS® is used to model the robot. The control systems are designed as joint space controllers and simulated using an ADAMS® and MATLAB/Simulink co-simulation platform. The simulation results are used to tune the controllers and to compare their performance under the best tuning conditions. The results show that when compared with the PID controller, the RISE controller with non-linear robust term provides robust control performance with asymptotic trajectory tracking and less overshoot in nonlinear systems. These results pave the way for implementation of the RISE controller in the real robotic system and verification of its performance.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Based Performance Comparison of Cascade PID and RISE Controllers for the 6-DOF Heavy Payload Industrial Robot\",\"authors\":\"Geonhyup Lee, Amre Eizad, Hosu Lee, Sanghun Pyo, Jungwon Yoon\",\"doi\":\"10.1109/UR49135.2020.9144847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a performance comparison of the robust integral of sign of error (RISE) controller with the cascade PID controller for the control of a 6-DOF heavy payload industrial robot. The 6-DOF heavy payload industrial robot is a highly nonlinear system. In this research, the dynamic simulation software ADAMS® is used to model the robot. The control systems are designed as joint space controllers and simulated using an ADAMS® and MATLAB/Simulink co-simulation platform. The simulation results are used to tune the controllers and to compare their performance under the best tuning conditions. The results show that when compared with the PID controller, the RISE controller with non-linear robust term provides robust control performance with asymptotic trajectory tracking and less overshoot in nonlinear systems. These results pave the way for implementation of the RISE controller in the real robotic system and verification of its performance.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对六自由度大载荷工业机器人的鲁棒误差积分(RISE)控制器与串级PID控制器进行了性能比较。六自由度大载荷工业机器人是一个高度非线性系统。在本研究中,采用动态仿真软件ADAMS®对机器人进行建模。控制系统被设计为联合空间控制器,并使用ADAMS®和MATLAB/Simulink联合仿真平台进行仿真。仿真结果用于对控制器进行调优,并比较其在最佳调优条件下的性能。结果表明,与PID控制器相比,具有非线性鲁棒项的RISE控制器在非线性系统中具有渐近轨迹跟踪和较小超调的鲁棒控制性能。这些结果为在实际机器人系统中实现RISE控制器并验证其性能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation Based Performance Comparison of Cascade PID and RISE Controllers for the 6-DOF Heavy Payload Industrial Robot
This paper presents a performance comparison of the robust integral of sign of error (RISE) controller with the cascade PID controller for the control of a 6-DOF heavy payload industrial robot. The 6-DOF heavy payload industrial robot is a highly nonlinear system. In this research, the dynamic simulation software ADAMS® is used to model the robot. The control systems are designed as joint space controllers and simulated using an ADAMS® and MATLAB/Simulink co-simulation platform. The simulation results are used to tune the controllers and to compare their performance under the best tuning conditions. The results show that when compared with the PID controller, the RISE controller with non-linear robust term provides robust control performance with asymptotic trajectory tracking and less overshoot in nonlinear systems. These results pave the way for implementation of the RISE controller in the real robotic system and verification of its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy Improvement of Fisheye Stereo Camera by Combining Multiple Disparity Offset Maps Cloud Services for Culture Aware Conversation: Socially Assistive Robots and Virtual Assistants Robotic Path Planning for Inspection of Complex-Shaped Objects Prediction of expected Angle of knee joint of human lower limbs based on leg interaction A CNN-LSTM Hybrid Model for Ankle Joint Motion Recognition Method Based on sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1