基于brdf的照明计算的同态分解

Lutz Latta, A. Kolb
{"title":"基于brdf的照明计算的同态分解","authors":"Lutz Latta, A. Kolb","doi":"10.1145/566570.566610","DOIUrl":null,"url":null,"abstract":"Several techniques have been developed to approximate Bidirectional Reflectance Distribution Functions (BRDF) with acceptable quality and performance for realtime applications. The recently published Homomorphic Factorization by McCool et al. is a general approximation approach that can be used with various setups and for different quality requirements.In this paper we propose a new technique based on the Homomorphic Factorization. Instead of approximating the BRDF, our technique factorizes the full lighting computation of an isotropic BRDF in a global illumination scenario. With this method materials in complex lighting situations can be simulated with only two textures by using commonly available computation capabilities of current graphics hardware.The new technique can also be considered as a generalized approach to several environment map prefiltering techniques. Existing prefiltering techniques are usually limited to specific BRDFs or require advanced hardware capabilities like 3D texturing. With the factorization only common 2D textures are required.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Homomorphic factorization of BRDF-based lighting computation\",\"authors\":\"Lutz Latta, A. Kolb\",\"doi\":\"10.1145/566570.566610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several techniques have been developed to approximate Bidirectional Reflectance Distribution Functions (BRDF) with acceptable quality and performance for realtime applications. The recently published Homomorphic Factorization by McCool et al. is a general approximation approach that can be used with various setups and for different quality requirements.In this paper we propose a new technique based on the Homomorphic Factorization. Instead of approximating the BRDF, our technique factorizes the full lighting computation of an isotropic BRDF in a global illumination scenario. With this method materials in complex lighting situations can be simulated with only two textures by using commonly available computation capabilities of current graphics hardware.The new technique can also be considered as a generalized approach to several environment map prefiltering techniques. Existing prefiltering techniques are usually limited to specific BRDFs or require advanced hardware capabilities like 3D texturing. With the factorization only common 2D textures are required.\",\"PeriodicalId\":197746,\"journal\":{\"name\":\"Proceedings of the 29th annual conference on Computer graphics and interactive techniques\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/566570.566610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/566570.566610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

已经开发了几种近似双向反射分布函数(BRDF)的技术,具有可接受的质量和性能,用于实时应用。McCool等人最近发表的同态因子分解是一种通用的近似方法,可用于各种设置和不同的质量要求。本文提出了一种基于同态分解的新技术。我们的技术不是近似BRDF,而是在全局照明场景中对各向同性BRDF进行全照明计算。该方法可以利用当前图形硬件的通用计算能力,仅用两种纹理模拟复杂光照条件下的材料。新技术也可以看作是几种环境映射预滤波技术的一种推广方法。现有的预滤波技术通常仅限于特定的brdf或需要高级硬件功能,如3D纹理。通过分解,只需要常见的2D纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Homomorphic factorization of BRDF-based lighting computation
Several techniques have been developed to approximate Bidirectional Reflectance Distribution Functions (BRDF) with acceptable quality and performance for realtime applications. The recently published Homomorphic Factorization by McCool et al. is a general approximation approach that can be used with various setups and for different quality requirements.In this paper we propose a new technique based on the Homomorphic Factorization. Instead of approximating the BRDF, our technique factorizes the full lighting computation of an isotropic BRDF in a global illumination scenario. With this method materials in complex lighting situations can be simulated with only two textures by using commonly available computation capabilities of current graphics hardware.The new technique can also be considered as a generalized approach to several environment map prefiltering techniques. Existing prefiltering techniques are usually limited to specific BRDFs or require advanced hardware capabilities like 3D texturing. With the factorization only common 2D textures are required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: 3D acquisition and image based rendering Session details: Geometry Session details: Soft things Session details: Lighting and appearance Session details: Images and video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1