使用动态本地二进制模式的音频事件自动识别

Chien-Yao Wang, Yu-Hao Chin, Tzu-Chiang Tai, D. Gunawan, Jia-Ching Wang
{"title":"使用动态本地二进制模式的音频事件自动识别","authors":"Chien-Yao Wang, Yu-Hao Chin, Tzu-Chiang Tai, D. Gunawan, Jia-Ching Wang","doi":"10.1109/ICCE-TW.2015.7216879","DOIUrl":null,"url":null,"abstract":"This work proposes an automatic recognition system for recognizing audio events. First, an audio signal is converted into a spectrogram by short time Fourier transform. The acoustic background noises in the spectrogram are reduced by box filtering. The contrast of the spectrogram is then enhanced by VAR operation. With the enhanced spectrogram, this work further proposes a novel dynamic local binary pattern (DLBP) feature based on human auditory system. Finally, the DLBP features are fed to multi-class support vector machines to achieve the audio event recognition. The experimental results on 16 classes of audio events demonstrate the performance of the proposed audio event recognition system.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic recognition of audio event using dynamic local binary patterns\",\"authors\":\"Chien-Yao Wang, Yu-Hao Chin, Tzu-Chiang Tai, D. Gunawan, Jia-Ching Wang\",\"doi\":\"10.1109/ICCE-TW.2015.7216879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes an automatic recognition system for recognizing audio events. First, an audio signal is converted into a spectrogram by short time Fourier transform. The acoustic background noises in the spectrogram are reduced by box filtering. The contrast of the spectrogram is then enhanced by VAR operation. With the enhanced spectrogram, this work further proposes a novel dynamic local binary pattern (DLBP) feature based on human auditory system. Finally, the DLBP features are fed to multi-class support vector machines to achieve the audio event recognition. The experimental results on 16 classes of audio events demonstrate the performance of the proposed audio event recognition system.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7216879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于音频事件识别的自动识别系统。首先,通过短时傅里叶变换将音频信号转换成频谱图。采用盒滤波方法对谱图中的声背景噪声进行了抑制。然后通过VAR操作增强光谱图的对比度。在增强谱图的基础上,进一步提出了一种基于听觉系统的动态局部二元模式(DLBP)特征。最后,将DLBP特征输入到多类支持向量机中,实现音频事件识别。对16类音频事件的实验结果验证了所提音频事件识别系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic recognition of audio event using dynamic local binary patterns
This work proposes an automatic recognition system for recognizing audio events. First, an audio signal is converted into a spectrogram by short time Fourier transform. The acoustic background noises in the spectrogram are reduced by box filtering. The contrast of the spectrogram is then enhanced by VAR operation. With the enhanced spectrogram, this work further proposes a novel dynamic local binary pattern (DLBP) feature based on human auditory system. Finally, the DLBP features are fed to multi-class support vector machines to achieve the audio event recognition. The experimental results on 16 classes of audio events demonstrate the performance of the proposed audio event recognition system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy-rough set based ontology for hybrid recommendation Monitoring system of patient position based on wireless body area sensor network Automation control algorithms in gas mixture for preterm infant oxygen therapy Interframe hole filling for DIBR in 3D videos Automatic recognition of audio event using dynamic local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1