采用基于退火递归神经网络的极值搜索算法对PID控制器进行整定

Bin Zuo, Yun-an Hu, Jing Li
{"title":"采用基于退火递归神经网络的极值搜索算法对PID控制器进行整定","authors":"Bin Zuo, Yun-an Hu, Jing Li","doi":"10.1109/KAM.2010.5646302","DOIUrl":null,"url":null,"abstract":"This paper proposes a discrete-time extremum seeking algorithm based on annealing recurrent neural network (ESA-ARNN) for auto-tuning of PID controller parameters. Firstly, the process of tuning PID controller parameters is transformed into an extremum seeking problem by introducing a cost function, such as the integral squared error (ISE). Then, in order to solve this extremum seeking problem, a discrete-time ESA-ARNN is proposed, which can realize auto-tuning for PID controller parameters. Lastly, the novel auto-tuning method is applied to tuning PID controller parameters of the process system with second-order plus dead time (SOPDT). Simulation results indicate that PID controller parameters tuned by ESA-ARNN have better performance than those tuned by the eight prevalent PID tuning schemes.","PeriodicalId":160788,"journal":{"name":"2010 Third International Symposium on Knowledge Acquisition and Modeling","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PID controller tuning by using extremum seeking algorithm based on annealing recurrent neural network\",\"authors\":\"Bin Zuo, Yun-an Hu, Jing Li\",\"doi\":\"10.1109/KAM.2010.5646302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a discrete-time extremum seeking algorithm based on annealing recurrent neural network (ESA-ARNN) for auto-tuning of PID controller parameters. Firstly, the process of tuning PID controller parameters is transformed into an extremum seeking problem by introducing a cost function, such as the integral squared error (ISE). Then, in order to solve this extremum seeking problem, a discrete-time ESA-ARNN is proposed, which can realize auto-tuning for PID controller parameters. Lastly, the novel auto-tuning method is applied to tuning PID controller parameters of the process system with second-order plus dead time (SOPDT). Simulation results indicate that PID controller parameters tuned by ESA-ARNN have better performance than those tuned by the eight prevalent PID tuning schemes.\",\"PeriodicalId\":160788,\"journal\":{\"name\":\"2010 Third International Symposium on Knowledge Acquisition and Modeling\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Symposium on Knowledge Acquisition and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAM.2010.5646302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2010.5646302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于退火递归神经网络(ESA-ARNN)的离散时间极值搜索算法,用于PID控制器参数的自整定。首先,通过引入积分平方误差(ISE)等代价函数,将PID控制器参数整定过程转化为求极值问题;然后,为了解决这一极值求问题,提出了一种离散时间ESA-ARNN算法,该算法可以实现PID控制器参数的自整定。最后,将该自整定方法应用于二阶加死区(SOPDT)过程系统的PID控制器参数整定。仿真结果表明,采用ESA-ARNN方法整定的PID控制器参数比采用8种常用PID整定方法整定的参数具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PID controller tuning by using extremum seeking algorithm based on annealing recurrent neural network
This paper proposes a discrete-time extremum seeking algorithm based on annealing recurrent neural network (ESA-ARNN) for auto-tuning of PID controller parameters. Firstly, the process of tuning PID controller parameters is transformed into an extremum seeking problem by introducing a cost function, such as the integral squared error (ISE). Then, in order to solve this extremum seeking problem, a discrete-time ESA-ARNN is proposed, which can realize auto-tuning for PID controller parameters. Lastly, the novel auto-tuning method is applied to tuning PID controller parameters of the process system with second-order plus dead time (SOPDT). Simulation results indicate that PID controller parameters tuned by ESA-ARNN have better performance than those tuned by the eight prevalent PID tuning schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network resources construction based on virtualization Fuzzy variable time series based on fuzzy membership function and econometrics A novel VLSI architecture of 8×8 integer DCT based on H.264/AVC FRext The new way of configuration management of network devices under mutable environment Staff assessment and promotion models based on social assessment matrix inspired by social network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1