利用卡拉法研究博弈协同进化中的棋子微分信息

Wee-Chong Oon, Yew Jin Lim
{"title":"利用卡拉法研究博弈协同进化中的棋子微分信息","authors":"Wee-Chong Oon, Yew Jin Lim","doi":"10.1109/CEC.2003.1299868","DOIUrl":null,"url":null,"abstract":"This paper describes a series of experiments using co-evolution of artificial neural networks on a game called Kalah. The technique employed closely follows the one used by Chellapilla and Fogel to evolve the successful checkers program Anaconda. The experiments aim to provide insight on the effect of including piece differential information, a basic yet crucial piece of expert knowledge, into the neural network inputs.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An investigation on piece differential information in co-evolution on games using Kalah\",\"authors\":\"Wee-Chong Oon, Yew Jin Lim\",\"doi\":\"10.1109/CEC.2003.1299868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a series of experiments using co-evolution of artificial neural networks on a game called Kalah. The technique employed closely follows the one used by Chellapilla and Fogel to evolve the successful checkers program Anaconda. The experiments aim to provide insight on the effect of including piece differential information, a basic yet crucial piece of expert knowledge, into the neural network inputs.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文描述了在一款名为Kalah的游戏中使用人工神经网络的协同进化进行的一系列实验。所采用的技术与Chellapilla和Fogel开发成功的跳棋程序Anaconda的技术非常相似。这些实验旨在深入了解将片段差分信息(一种基本但至关重要的专家知识)纳入神经网络输入的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An investigation on piece differential information in co-evolution on games using Kalah
This paper describes a series of experiments using co-evolution of artificial neural networks on a game called Kalah. The technique employed closely follows the one used by Chellapilla and Fogel to evolve the successful checkers program Anaconda. The experiments aim to provide insight on the effect of including piece differential information, a basic yet crucial piece of expert knowledge, into the neural network inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1