预测缓存条件和实时需求的HTTP(S)自适应流客户端

Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, E. Petajan
{"title":"预测缓存条件和实时需求的HTTP(S)自适应流客户端","authors":"Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, E. Petajan","doi":"10.1145/3083187.3083193","DOIUrl":null,"url":null,"abstract":"Stalls during video playback are perhaps the most important indicator of a client's viewing experience. To provide the best possible service, a proactive network operator may therefore want to know the buffer conditions of streaming clients and use this information to help avoid stalls due to empty buffers. However, estimation of clients' buffer conditions is complicated by most streaming services being rate-adaptive, and many of them also encrypted. Rate adaptation reduces the correlation between network throughput and client buffer conditions. Usage of HTTPS prevents operators from observing information related to video chunk requests, such as indications of rate adaptation or other HTTP-level information. This paper presents BUFFEST, a novel classification framework that can be used to classify and predict streaming clients' buffer conditions from both HTTP and HTTPS traffic. To illustrate the tradeoffs between prediction accuracy and the available information used by classifiers, we design and evaluate classifiers of different complexity. At the core of BUFFEST is an event-based buffer emulator module for detailed analysis of clients' buffer levels throughout a streaming session, as well as for automated training and evaluation of online packet-level classifiers. We then present example results using simple threshold-based classifiers and machine learning classifiers that only use TCP/IP packet-level information. Our results are encouraging and show that BUFFEST can distinguish streaming clients with low buffer conditions from clients with significant buffer margin during a session even when HTTPS is used.","PeriodicalId":123321,"journal":{"name":"Proceedings of the 8th ACM on Multimedia Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"BUFFEST: Predicting Buffer Conditions and Real-time Requirements of HTTP(S) Adaptive Streaming Clients\",\"authors\":\"Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, E. Petajan\",\"doi\":\"10.1145/3083187.3083193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stalls during video playback are perhaps the most important indicator of a client's viewing experience. To provide the best possible service, a proactive network operator may therefore want to know the buffer conditions of streaming clients and use this information to help avoid stalls due to empty buffers. However, estimation of clients' buffer conditions is complicated by most streaming services being rate-adaptive, and many of them also encrypted. Rate adaptation reduces the correlation between network throughput and client buffer conditions. Usage of HTTPS prevents operators from observing information related to video chunk requests, such as indications of rate adaptation or other HTTP-level information. This paper presents BUFFEST, a novel classification framework that can be used to classify and predict streaming clients' buffer conditions from both HTTP and HTTPS traffic. To illustrate the tradeoffs between prediction accuracy and the available information used by classifiers, we design and evaluate classifiers of different complexity. At the core of BUFFEST is an event-based buffer emulator module for detailed analysis of clients' buffer levels throughout a streaming session, as well as for automated training and evaluation of online packet-level classifiers. We then present example results using simple threshold-based classifiers and machine learning classifiers that only use TCP/IP packet-level information. Our results are encouraging and show that BUFFEST can distinguish streaming clients with low buffer conditions from clients with significant buffer margin during a session even when HTTPS is used.\",\"PeriodicalId\":123321,\"journal\":{\"name\":\"Proceedings of the 8th ACM on Multimedia Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM on Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3083187.3083193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM on Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3083187.3083193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

视频播放过程中的停顿可能是客户观看体验的最重要指标。因此,为了提供最好的服务,主动网络运营商可能希望了解流客户端的缓冲条件,并使用这些信息来帮助避免由于空缓冲区而导致的停机。然而,由于大多数流媒体服务是速率自适应的,并且其中许多服务也是加密的,因此对客户端缓冲条件的估计很复杂。速率自适应降低了网络吞吐量和客户端缓冲区条件之间的相关性。使用HTTPS可以防止运营商观察到与视频块请求相关的信息,例如速率适应的指示或其他http级信息。本文提出了一种新的分类框架BUFFEST,它可以用于从HTTP和HTTPS流量中分类和预测流客户端的缓冲条件。为了说明预测精度和分类器使用的可用信息之间的权衡,我们设计和评估了不同复杂性的分类器。BUFFEST的核心是一个基于事件的缓冲区仿真器模块,用于在整个流会话中详细分析客户端的缓冲区级别,以及在线包级别分类器的自动训练和评估。然后,我们使用简单的基于阈值的分类器和仅使用TCP/IP包级信息的机器学习分类器给出示例结果。我们的结果令人鼓舞,并且表明即使在使用HTTPS的情况下,BUFFEST也可以在会话期间区分具有低缓冲条件的流客户端和具有显著缓冲余量的客户端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BUFFEST: Predicting Buffer Conditions and Real-time Requirements of HTTP(S) Adaptive Streaming Clients
Stalls during video playback are perhaps the most important indicator of a client's viewing experience. To provide the best possible service, a proactive network operator may therefore want to know the buffer conditions of streaming clients and use this information to help avoid stalls due to empty buffers. However, estimation of clients' buffer conditions is complicated by most streaming services being rate-adaptive, and many of them also encrypted. Rate adaptation reduces the correlation between network throughput and client buffer conditions. Usage of HTTPS prevents operators from observing information related to video chunk requests, such as indications of rate adaptation or other HTTP-level information. This paper presents BUFFEST, a novel classification framework that can be used to classify and predict streaming clients' buffer conditions from both HTTP and HTTPS traffic. To illustrate the tradeoffs between prediction accuracy and the available information used by classifiers, we design and evaluate classifiers of different complexity. At the core of BUFFEST is an event-based buffer emulator module for detailed analysis of clients' buffer levels throughout a streaming session, as well as for automated training and evaluation of online packet-level classifiers. We then present example results using simple threshold-based classifiers and machine learning classifiers that only use TCP/IP packet-level information. Our results are encouraging and show that BUFFEST can distinguish streaming clients with low buffer conditions from clients with significant buffer margin during a session even when HTTPS is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive Caching of Music Videos based on Audio Features, Mood, and Genre Video on Mobile CPU: UHD Video Parallel Decoding for Asymmetric Multicores Load Balancing of Multimedia Workloads for Energy Efficiency on the Tegra K1 Multicore Architecture Towards Engineering a Web-Scale Multimedia Service: A Case Study Using Spark 360-Degree Video Head Movement Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1