用低雷诺数模型计算方形u型弯头的流动和传热

K. Nikas, H. Iacovides
{"title":"用低雷诺数模型计算方形u型弯头的流动和传热","authors":"K. Nikas, H. Iacovides","doi":"10.1108/09615530410517977","DOIUrl":null,"url":null,"abstract":"This study is concerned with the computation of turbulent flow and heat transfer in U‐bends of strong curvature. Following the earlier studies within the authors' group on flows through round‐ended U‐bends, here attention is turned to flows through square‐ended U‐bends. Flows at two Reynolds numbers have been computed, one at 100,000 and the other at 36,000. In the heat transfer analysis, the Prandtl number was either 0.72 (air) or, in a further departure from our earlier studies, 5.9 (water). The turbulence modelling approaches examined, include a two‐layer and a low‐Re k‐e model, a two‐layer and a low‐Re version of the basic differential stress model (DSM) and a more recently developed, realisable version of the differential stress model that is free of wall‐parameters. For the low‐Re effective viscosity model (EVM) and DSMs, an alternative, recently proposed length‐scale correction term, independent of wall distance has also been tested. Even the simplest model employed – two‐layer EVM – reproduces the mean flow development with reasonable accuracy, suggesting that the mean flow development is mainly influenced by mean pressure rather than the turbulence field. The heat transfer parameters, on the other hand, show that only the low‐Re DSMs produce reliable Nusselt number predictions for both Prandtl numbers examined.","PeriodicalId":438618,"journal":{"name":"Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"THE COMPUTATION OF FLOW AND HEAT TRANSFER THROUGH SQUARE-ENDED U-BENDS, USING LOW-REYNOLDS-NUMBER MODELS\",\"authors\":\"K. Nikas, H. Iacovides\",\"doi\":\"10.1108/09615530410517977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is concerned with the computation of turbulent flow and heat transfer in U‐bends of strong curvature. Following the earlier studies within the authors' group on flows through round‐ended U‐bends, here attention is turned to flows through square‐ended U‐bends. Flows at two Reynolds numbers have been computed, one at 100,000 and the other at 36,000. In the heat transfer analysis, the Prandtl number was either 0.72 (air) or, in a further departure from our earlier studies, 5.9 (water). The turbulence modelling approaches examined, include a two‐layer and a low‐Re k‐e model, a two‐layer and a low‐Re version of the basic differential stress model (DSM) and a more recently developed, realisable version of the differential stress model that is free of wall‐parameters. For the low‐Re effective viscosity model (EVM) and DSMs, an alternative, recently proposed length‐scale correction term, independent of wall distance has also been tested. Even the simplest model employed – two‐layer EVM – reproduces the mean flow development with reasonable accuracy, suggesting that the mean flow development is mainly influenced by mean pressure rather than the turbulence field. The heat transfer parameters, on the other hand, show that only the low‐Re DSMs produce reliable Nusselt number predictions for both Prandtl numbers examined.\",\"PeriodicalId\":438618,\"journal\":{\"name\":\"Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/09615530410517977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/09615530410517977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了强曲率U型弯管内湍流流动和换热的计算。根据作者小组对圆端U型弯管流动的早期研究,这里的注意力转向了方端U型弯管的流动。计算了两个雷诺数下的流量,一个是100,000,另一个是36,000。在传热分析中,普朗特数要么是0.72(空气),要么是5.9(水),这与我们之前的研究有进一步的不同。所研究的湍流建模方法包括两层和低Re的k - e模型,基本差应力模型(DSM)的两层和低Re版本,以及最近开发的、可实现的无壁参数的差应力模型版本。对于低Re有效粘度模型(EVM)和DSMs,最近提出的另一种与壁距无关的长度尺度校正项也进行了测试。即使采用最简单的两层EVM模型也能以合理的精度再现平均流动发展,这表明平均流动发展主要受平均压力而不是湍流场的影响。另一方面,传热参数表明,对于两个普朗特数,只有低Re DSMs才能产生可靠的努塞尔数预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE COMPUTATION OF FLOW AND HEAT TRANSFER THROUGH SQUARE-ENDED U-BENDS, USING LOW-REYNOLDS-NUMBER MODELS
This study is concerned with the computation of turbulent flow and heat transfer in U‐bends of strong curvature. Following the earlier studies within the authors' group on flows through round‐ended U‐bends, here attention is turned to flows through square‐ended U‐bends. Flows at two Reynolds numbers have been computed, one at 100,000 and the other at 36,000. In the heat transfer analysis, the Prandtl number was either 0.72 (air) or, in a further departure from our earlier studies, 5.9 (water). The turbulence modelling approaches examined, include a two‐layer and a low‐Re k‐e model, a two‐layer and a low‐Re version of the basic differential stress model (DSM) and a more recently developed, realisable version of the differential stress model that is free of wall‐parameters. For the low‐Re effective viscosity model (EVM) and DSMs, an alternative, recently proposed length‐scale correction term, independent of wall distance has also been tested. Even the simplest model employed – two‐layer EVM – reproduces the mean flow development with reasonable accuracy, suggesting that the mean flow development is mainly influenced by mean pressure rather than the turbulence field. The heat transfer parameters, on the other hand, show that only the low‐Re DSMs produce reliable Nusselt number predictions for both Prandtl numbers examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MODELING OF TURBULENT MELT CONVECTION DURING CZOCHRALSKI BULK CRYSTAL GROWTH THE COMPUTATION OF FLOW AND HEAT TRANSFER THROUGH SQUARE-ENDED U-BENDS, USING LOW-REYNOLDS-NUMBER MODELS RELATIONSHIP BETWEEN WALL PRESSURE FLUCTUATIONS AND STREAMWISE VORTICITY IN A TURBULENT BOUNDARY LAYER REYNOLDS-NUMBER DEPENDENCE OF STREAMWISE VELOCITY FLUCTUATIONS IN TURBULENT PIPE FLOW SPATIAL DNS OF THE FLOW TRANSITION OF A RECTANGULAR BUOYANT REACTING FREE-JET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1