预测网络中的边和顶点

Walid K. Sharabati, E. Wegman, Yasmin H. Said
{"title":"预测网络中的边和顶点","authors":"Walid K. Sharabati, E. Wegman, Yasmin H. Said","doi":"10.1109/WI-IAT.2010.317","DOIUrl":null,"url":null,"abstract":"This paper addresses missing edges and vertices in a network. We discuss interchangeability and duality between vertices and edges in a graph. We use covariate information associated with vertices to estimate the probability of missing edges; likewise, we use covariate information associated with edges to estimate the probability of missing vertices. In order to predict missing vertices, we apply the line graph transformation, which converts edges to vertices and vertices to edges. The probability of an edge is obtained by taking the inner product of the vectors of covariates. Moreover, we have extended the methodology of predicting two edges (dyadic ties) to predict edge","PeriodicalId":197966,"journal":{"name":"Web Intelligence/IAT Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Edges and Vertices in a Network\",\"authors\":\"Walid K. Sharabati, E. Wegman, Yasmin H. Said\",\"doi\":\"10.1109/WI-IAT.2010.317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses missing edges and vertices in a network. We discuss interchangeability and duality between vertices and edges in a graph. We use covariate information associated with vertices to estimate the probability of missing edges; likewise, we use covariate information associated with edges to estimate the probability of missing vertices. In order to predict missing vertices, we apply the line graph transformation, which converts edges to vertices and vertices to edges. The probability of an edge is obtained by taking the inner product of the vectors of covariates. Moreover, we have extended the methodology of predicting two edges (dyadic ties) to predict edge\",\"PeriodicalId\":197966,\"journal\":{\"name\":\"Web Intelligence/IAT Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence/IAT Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence/IAT Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了网络中缺失的边和顶点。讨论了图中顶点和边的互换性和对偶性。我们使用与顶点相关的协变量信息来估计缺失边的概率;同样,我们使用与边相关的协变量信息来估计缺失顶点的概率。为了预测缺失的顶点,我们应用线形图变换,将边转换为顶点,将顶点转换为边。边的概率是通过取协变量向量的内积得到的。此外,我们还扩展了预测两条边的方法(并矢联系)来预测边
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Edges and Vertices in a Network
This paper addresses missing edges and vertices in a network. We discuss interchangeability and duality between vertices and edges in a graph. We use covariate information associated with vertices to estimate the probability of missing edges; likewise, we use covariate information associated with edges to estimate the probability of missing vertices. In order to predict missing vertices, we apply the line graph transformation, which converts edges to vertices and vertices to edges. The probability of an edge is obtained by taking the inner product of the vectors of covariates. Moreover, we have extended the methodology of predicting two edges (dyadic ties) to predict edge
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracing Strength of Relationships in Social Networks LiSTOMS: A Light-Weighted Self-Tuning Ontology Mapping System Careful Seeding Based on Independent Component Analysis for k-Means Clustering Content Propagation Analysis of E-mail Communications Towards Privacy Preserving Information Retrieval through Semantic Microaggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1