一致深度图的自适应时空相似性度量

Yong-Ho Shin, Kuk-jin Yoon
{"title":"一致深度图的自适应时空相似性度量","authors":"Yong-Ho Shin, Kuk-jin Yoon","doi":"10.1109/CAIPT.2017.8320677","DOIUrl":null,"url":null,"abstract":"When computing a depth map sequence of a stereo image sequence, the temporal consistency of computed depth maps is a very important factor along with the accuracy. In this paper, we propose a new similarity measure for spatiotemporal stereo matching aiming at producing temporally consistent depth maps from a stereo image sequence. To enforce the temporal consistency in a spatiotemporal similarity measure, we assign adaptive support weights to pixels in a spatiotemporal window and define the four-dimensional support region in consideration of the motion and depth variation along the time. In addition, we model the support weight to be less sensitive to illumination variation. The similarity is computed simply by comparing two support regions with computed support weights. The proposed similarity measure truly improves the performance of stereo matching both in the accuracy and in the consistency aspects.","PeriodicalId":351075,"journal":{"name":"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive spatiotemporal similarity measure for a consistent depth maps\",\"authors\":\"Yong-Ho Shin, Kuk-jin Yoon\",\"doi\":\"10.1109/CAIPT.2017.8320677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When computing a depth map sequence of a stereo image sequence, the temporal consistency of computed depth maps is a very important factor along with the accuracy. In this paper, we propose a new similarity measure for spatiotemporal stereo matching aiming at producing temporally consistent depth maps from a stereo image sequence. To enforce the temporal consistency in a spatiotemporal similarity measure, we assign adaptive support weights to pixels in a spatiotemporal window and define the four-dimensional support region in consideration of the motion and depth variation along the time. In addition, we model the support weight to be less sensitive to illumination variation. The similarity is computed simply by comparing two support regions with computed support weights. The proposed similarity measure truly improves the performance of stereo matching both in the accuracy and in the consistency aspects.\",\"PeriodicalId\":351075,\"journal\":{\"name\":\"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIPT.2017.8320677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIPT.2017.8320677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在计算立体图像序列的深度图序列时,计算深度图的时间一致性和精度是一个非常重要的因素。在本文中,我们提出了一种新的时空立体匹配相似度度量,旨在从立体图像序列中生成时间一致的深度图。为了增强时空相似性度量中的时间一致性,我们在时空窗口中为像素分配自适应支持权,并根据运动和深度随时间的变化定义四维支持区域。此外,我们还建立了对光照变化不太敏感的支撑权重模型。通过比较两个支持区域与计算的支持权重,简单地计算相似度。所提出的相似度度量确实提高了立体匹配的精度和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive spatiotemporal similarity measure for a consistent depth maps
When computing a depth map sequence of a stereo image sequence, the temporal consistency of computed depth maps is a very important factor along with the accuracy. In this paper, we propose a new similarity measure for spatiotemporal stereo matching aiming at producing temporally consistent depth maps from a stereo image sequence. To enforce the temporal consistency in a spatiotemporal similarity measure, we assign adaptive support weights to pixels in a spatiotemporal window and define the four-dimensional support region in consideration of the motion and depth variation along the time. In addition, we model the support weight to be less sensitive to illumination variation. The similarity is computed simply by comparing two support regions with computed support weights. The proposed similarity measure truly improves the performance of stereo matching both in the accuracy and in the consistency aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of real-time static hand gesture recognition using artificial neural network Application of baby's nutrition status using Macromedia Flash Analysis of radio based train control system using LTE-R and analysis of security requirements: The security of the radio based train control system A study on the effective interaction method to improve the presence in social virtual reality game Expert system to optimize the best goat selection using topsis: Decision support system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1