{"title":"用于超立方体的面向图的映射策略","authors":"Woei-kae Chen, E. Gehringer","doi":"10.1145/62297.62322","DOIUrl":null,"url":null,"abstract":"The mapping problem is the problem of implementing a computational task on a target architecture in order to maximize some performance metric. For a hypercube-interconnected multiprocessor, the mapping problem arises when the topology of a task graph is different from a hypercube. It is desirable to find a mapping of tasks to processors that minimizes average path length and hence interprocessor communication. The problem of finding an optimal mapping, however, has been proven to be NP-complete. Several different approaches have been taken to discover suitable mappings for a variety of target architectures. Since the mapping problem is NP-complete, approximation algorithms are used to find good mappings instead of optimal ones. Usually, greedy and/or local search algorithms are introduced to approximate the optimal solutions. This paper presents a greedy mapping algorithm for hypercube interconnection structures, which utilizes the graph-oriented mapping strategy to map a communication graph to a hypercube. The strategy is compared to previous strategies for attacking the mapping problem. A simulation is performed to estimate both the worst-case bounds for the greedy mapping strategy and the average performance.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A graph-oriented mapping strategy for a hypercube\",\"authors\":\"Woei-kae Chen, E. Gehringer\",\"doi\":\"10.1145/62297.62322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mapping problem is the problem of implementing a computational task on a target architecture in order to maximize some performance metric. For a hypercube-interconnected multiprocessor, the mapping problem arises when the topology of a task graph is different from a hypercube. It is desirable to find a mapping of tasks to processors that minimizes average path length and hence interprocessor communication. The problem of finding an optimal mapping, however, has been proven to be NP-complete. Several different approaches have been taken to discover suitable mappings for a variety of target architectures. Since the mapping problem is NP-complete, approximation algorithms are used to find good mappings instead of optimal ones. Usually, greedy and/or local search algorithms are introduced to approximate the optimal solutions. This paper presents a greedy mapping algorithm for hypercube interconnection structures, which utilizes the graph-oriented mapping strategy to map a communication graph to a hypercube. The strategy is compared to previous strategies for attacking the mapping problem. A simulation is performed to estimate both the worst-case bounds for the greedy mapping strategy and the average performance.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62297.62322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62297.62322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mapping problem is the problem of implementing a computational task on a target architecture in order to maximize some performance metric. For a hypercube-interconnected multiprocessor, the mapping problem arises when the topology of a task graph is different from a hypercube. It is desirable to find a mapping of tasks to processors that minimizes average path length and hence interprocessor communication. The problem of finding an optimal mapping, however, has been proven to be NP-complete. Several different approaches have been taken to discover suitable mappings for a variety of target architectures. Since the mapping problem is NP-complete, approximation algorithms are used to find good mappings instead of optimal ones. Usually, greedy and/or local search algorithms are introduced to approximate the optimal solutions. This paper presents a greedy mapping algorithm for hypercube interconnection structures, which utilizes the graph-oriented mapping strategy to map a communication graph to a hypercube. The strategy is compared to previous strategies for attacking the mapping problem. A simulation is performed to estimate both the worst-case bounds for the greedy mapping strategy and the average performance.