用于超立方体的面向图的映射策略

Woei-kae Chen, E. Gehringer
{"title":"用于超立方体的面向图的映射策略","authors":"Woei-kae Chen, E. Gehringer","doi":"10.1145/62297.62322","DOIUrl":null,"url":null,"abstract":"The mapping problem is the problem of implementing a computational task on a target architecture in order to maximize some performance metric. For a hypercube-interconnected multiprocessor, the mapping problem arises when the topology of a task graph is different from a hypercube. It is desirable to find a mapping of tasks to processors that minimizes average path length and hence interprocessor communication. The problem of finding an optimal mapping, however, has been proven to be NP-complete. Several different approaches have been taken to discover suitable mappings for a variety of target architectures. Since the mapping problem is NP-complete, approximation algorithms are used to find good mappings instead of optimal ones. Usually, greedy and/or local search algorithms are introduced to approximate the optimal solutions. This paper presents a greedy mapping algorithm for hypercube interconnection structures, which utilizes the graph-oriented mapping strategy to map a communication graph to a hypercube. The strategy is compared to previous strategies for attacking the mapping problem. A simulation is performed to estimate both the worst-case bounds for the greedy mapping strategy and the average performance.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A graph-oriented mapping strategy for a hypercube\",\"authors\":\"Woei-kae Chen, E. Gehringer\",\"doi\":\"10.1145/62297.62322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mapping problem is the problem of implementing a computational task on a target architecture in order to maximize some performance metric. For a hypercube-interconnected multiprocessor, the mapping problem arises when the topology of a task graph is different from a hypercube. It is desirable to find a mapping of tasks to processors that minimizes average path length and hence interprocessor communication. The problem of finding an optimal mapping, however, has been proven to be NP-complete. Several different approaches have been taken to discover suitable mappings for a variety of target architectures. Since the mapping problem is NP-complete, approximation algorithms are used to find good mappings instead of optimal ones. Usually, greedy and/or local search algorithms are introduced to approximate the optimal solutions. This paper presents a greedy mapping algorithm for hypercube interconnection structures, which utilizes the graph-oriented mapping strategy to map a communication graph to a hypercube. The strategy is compared to previous strategies for attacking the mapping problem. A simulation is performed to estimate both the worst-case bounds for the greedy mapping strategy and the average performance.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62297.62322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62297.62322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

映射问题是在目标体系结构上实现计算任务以最大化某些性能指标的问题。对于超多维数据集互连的多处理器,当任务图的拓扑结构不同于超多维数据集时,就会出现映射问题。我们希望找到一种任务到处理器的映射,使平均路径长度最小化,从而使处理器间通信最小化。然而,寻找最优映射的问题已被证明是np完全的。已经采用了几种不同的方法来为各种目标体系结构发现合适的映射。由于映射问题是np完全的,所以使用近似算法来寻找好的映射而不是最优映射。通常,引入贪婪和/或局部搜索算法来逼近最优解。提出了一种超立方体互连结构的贪心映射算法,该算法利用面向图的映射策略将通信图映射到超立方体。将该策略与先前解决映射问题的策略进行比较。仿真计算了贪心映射策略的最坏情况边界和平均性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A graph-oriented mapping strategy for a hypercube
The mapping problem is the problem of implementing a computational task on a target architecture in order to maximize some performance metric. For a hypercube-interconnected multiprocessor, the mapping problem arises when the topology of a task graph is different from a hypercube. It is desirable to find a mapping of tasks to processors that minimizes average path length and hence interprocessor communication. The problem of finding an optimal mapping, however, has been proven to be NP-complete. Several different approaches have been taken to discover suitable mappings for a variety of target architectures. Since the mapping problem is NP-complete, approximation algorithms are used to find good mappings instead of optimal ones. Usually, greedy and/or local search algorithms are introduced to approximate the optimal solutions. This paper presents a greedy mapping algorithm for hypercube interconnection structures, which utilizes the graph-oriented mapping strategy to map a communication graph to a hypercube. The strategy is compared to previous strategies for attacking the mapping problem. A simulation is performed to estimate both the worst-case bounds for the greedy mapping strategy and the average performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Task allocation onto a hypercube by recursive mincut bipartitioning Comparison of two-dimensional FFT methods on the hypercube Best-first branch-and bound on a hypercube An interactive system for seismic velocity analysis QED on the connection machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1