平均张力对系缆疲劳寿命的影响

E. Lone, B. Leira, T. Sauder, Vegard Aksnes, Ø. Gabrielsen, K. Larsen
{"title":"平均张力对系缆疲劳寿命的影响","authors":"E. Lone, B. Leira, T. Sauder, Vegard Aksnes, Ø. Gabrielsen, K. Larsen","doi":"10.1115/omae2020-18628","DOIUrl":null,"url":null,"abstract":"\n Studies published in recent years have documented a significant mean load effect on fatigue capacity for offshore mooring chain, and show that a reduction of the mean load gives an increase in fatigue life. However, current S-N design curves are based on fatigue tests performed at a mean load of 20% of minimum breaking load (MBL), which is well above the typical mean loads for most mooring systems.\n This paper investigates the mean loads experienced during fatigue damage accumulation for the mooring system of a typical production semi-submersible, operating in Norwegian Sea conditions. The study is based on numerical, time-domain simulations, using environmental conditions defined from a series of hindcast data. A parameterized S-N design curve suggested by Fernández et al. (2019), incorporating a Smith-Watson-Topper mean stress correction model, is applied for fatigue damage calculation and compared to results for the S-N design curve prescribed by current standards.\n For the semi-submersible unit considered there is negligible difference in basing the correction on 3-hour mean load compared to the mean load of individual stress cycles, due to small low frequency tension variations. On this basis, a single correction factor is proposed to allow for mean load correction based on results available from a standard fatigue analysis.","PeriodicalId":297013,"journal":{"name":"Volume 2A: Structures, Safety, and Reliability","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of Mean Tension on Mooring Line Fatigue Life\",\"authors\":\"E. Lone, B. Leira, T. Sauder, Vegard Aksnes, Ø. Gabrielsen, K. Larsen\",\"doi\":\"10.1115/omae2020-18628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Studies published in recent years have documented a significant mean load effect on fatigue capacity for offshore mooring chain, and show that a reduction of the mean load gives an increase in fatigue life. However, current S-N design curves are based on fatigue tests performed at a mean load of 20% of minimum breaking load (MBL), which is well above the typical mean loads for most mooring systems.\\n This paper investigates the mean loads experienced during fatigue damage accumulation for the mooring system of a typical production semi-submersible, operating in Norwegian Sea conditions. The study is based on numerical, time-domain simulations, using environmental conditions defined from a series of hindcast data. A parameterized S-N design curve suggested by Fernández et al. (2019), incorporating a Smith-Watson-Topper mean stress correction model, is applied for fatigue damage calculation and compared to results for the S-N design curve prescribed by current standards.\\n For the semi-submersible unit considered there is negligible difference in basing the correction on 3-hour mean load compared to the mean load of individual stress cycles, due to small low frequency tension variations. On this basis, a single correction factor is proposed to allow for mean load correction based on results available from a standard fatigue analysis.\",\"PeriodicalId\":297013,\"journal\":{\"name\":\"Volume 2A: Structures, Safety, and Reliability\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: Structures, Safety, and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-18628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来发表的研究已经证明了平均载荷对海洋系泊链疲劳能力的显著影响,并且表明平均载荷的降低会增加疲劳寿命。然而,目前的S-N设计曲线是基于在最小断裂载荷(MBL)的20%的平均载荷下进行的疲劳测试,这远远高于大多数系泊系统的典型平均载荷。本文研究了在挪威海条件下运行的典型生产半潜式船系泊系统在疲劳损伤积累过程中所经历的平均载荷。该研究基于数值时域模拟,使用一系列后发数据定义的环境条件。采用Fernández等人(2019)提出的参数化S-N设计曲线,结合Smith-Watson-Topper平均应力修正模型,进行疲劳损伤计算,并与现行标准规定的S-N设计曲线结果进行比较。对于所考虑的半潜式装置,由于低频张力变化很小,基于3小时平均载荷的修正与单个应力循环的平均载荷相比,差异可以忽略不计。在此基础上,提出了一个单一的修正系数,以允许基于标准疲劳分析结果的平均载荷修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Mean Tension on Mooring Line Fatigue Life
Studies published in recent years have documented a significant mean load effect on fatigue capacity for offshore mooring chain, and show that a reduction of the mean load gives an increase in fatigue life. However, current S-N design curves are based on fatigue tests performed at a mean load of 20% of minimum breaking load (MBL), which is well above the typical mean loads for most mooring systems. This paper investigates the mean loads experienced during fatigue damage accumulation for the mooring system of a typical production semi-submersible, operating in Norwegian Sea conditions. The study is based on numerical, time-domain simulations, using environmental conditions defined from a series of hindcast data. A parameterized S-N design curve suggested by Fernández et al. (2019), incorporating a Smith-Watson-Topper mean stress correction model, is applied for fatigue damage calculation and compared to results for the S-N design curve prescribed by current standards. For the semi-submersible unit considered there is negligible difference in basing the correction on 3-hour mean load compared to the mean load of individual stress cycles, due to small low frequency tension variations. On this basis, a single correction factor is proposed to allow for mean load correction based on results available from a standard fatigue analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fracture Toughness Characterization of LSAW UOE Pipes in Sour Media and Implications on Burst Pressure Comparative Study on Stress Intensity Factors for Surface Cracks in Welded Joint and Flat Plate by Using the Influence Function Method Investigations Into Fatigue of OPB Loaded Offshore Mooring Chains Linearization of the Wave Spectrum: A Comparison of Methods MIL and MIRO Diagrams for Risk-Based Positioning of Drilling Rigs With Dynamic Positioning System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1