一个可扩展和可组合的分析平台,用于分布式广域跟踪

Aakash Khochare, Yogesh L. Simmhan
{"title":"一个可扩展和可组合的分析平台,用于分布式广域跟踪","authors":"Aakash Khochare, Yogesh L. Simmhan","doi":"10.1145/3288599.3299753","DOIUrl":null,"url":null,"abstract":"Smart cities are a manifestation of the Internet of Things (IoT). The push for smart cities has led to the proliferation of video cameras in public spaces [1]. London is expected to deploy 642,000 cameras by 2020. These cameras will be used primarily for surveillance of the city for urban safety. At the same time, such smart city deployments have also seen edge and fog computing paradigms gain preference over the cloud-only computing model [2]. This is due to the network proximity of the edge and fog devices to the data sources, offering lower latency access to data and lower bandwidth requirements to push high volume data, such as video streams, to the cloud.","PeriodicalId":346177,"journal":{"name":"Proceedings of the 20th International Conference on Distributed Computing and Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scalable and composable analytics platform for distributed wide-area tracking\",\"authors\":\"Aakash Khochare, Yogesh L. Simmhan\",\"doi\":\"10.1145/3288599.3299753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart cities are a manifestation of the Internet of Things (IoT). The push for smart cities has led to the proliferation of video cameras in public spaces [1]. London is expected to deploy 642,000 cameras by 2020. These cameras will be used primarily for surveillance of the city for urban safety. At the same time, such smart city deployments have also seen edge and fog computing paradigms gain preference over the cloud-only computing model [2]. This is due to the network proximity of the edge and fog devices to the data sources, offering lower latency access to data and lower bandwidth requirements to push high volume data, such as video streams, to the cloud.\",\"PeriodicalId\":346177,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Distributed Computing and Networking\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Distributed Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3288599.3299753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3288599.3299753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智慧城市是物联网的一种表现形式。对智慧城市的推动导致了公共场所摄像机的激增[1]。预计到2020年,伦敦将部署64.2万个摄像头。这些摄像头将主要用于监控城市,保障城市安全。与此同时,这种智慧城市部署也使边缘和雾计算范式比纯云计算模型更受青睐[2]。这是由于边缘和雾设备与数据源的网络接近,提供更低的延迟访问数据和更低的带宽需求,以将大容量数据(如视频流)推送到云端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A scalable and composable analytics platform for distributed wide-area tracking
Smart cities are a manifestation of the Internet of Things (IoT). The push for smart cities has led to the proliferation of video cameras in public spaces [1]. London is expected to deploy 642,000 cameras by 2020. These cameras will be used primarily for surveillance of the city for urban safety. At the same time, such smart city deployments have also seen edge and fog computing paradigms gain preference over the cloud-only computing model [2]. This is due to the network proximity of the edge and fog devices to the data sources, offering lower latency access to data and lower bandwidth requirements to push high volume data, such as video streams, to the cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving efficacy of concurrent internal binary search trees using local recovery An accurate missing data prediction method using LSTM based deep learning for health care A simple and practical concurrent non-blocking unbounded graph with linearizable reachability queries EnTER: an encounter based trowbox deployment strategy for enhancing network reliability in post-disaster scenarios over DTN Exploration and impact of blockchain-enabled adaptive non-binary trust models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1