早期FPGA互连漏功率估计

Shilpa Bhoj, D. Bhatia
{"title":"早期FPGA互连漏功率估计","authors":"Shilpa Bhoj, D. Bhatia","doi":"10.1109/ICCD.2008.4751898","DOIUrl":null,"url":null,"abstract":"Increasing transistor densities, rising popularity in mobile applications and migration towards eco-friendly computing systems have made power dissipation a key FPGA design issue. To meet stringent budgets, system architects need accurate estimates of power distribution at various design stages. In this work, we make several key contributions to FPGA leakage power estimation. First, we develop an accurate and efficient model to estimate total interconnect leakage power at various design stages prior to routing. Our methods derive leakage power estimates based on predicted values of routing congestion and interconnect resource utilization. We then extend the model to accomodate complex segmented routing architectures and low leakage architectures. Finally we formulate relations to generate post place leakage power estimates of individual routing channels. Our models for overall leakage power estimation achieve average accuracy rates of 93% and 89% for uniform and segmented routing architectures respectively. Experimentation results also establish the accuracy of the channel level estimation models at 85% and 80% for uniform and segmented routing structures. Our models and techniques would help designers make informed decisions by providing information on the power consumption of the interconnect fabric well before routing. Additionally, the equations can be used for architectural explorations and embedded in power and thermal aware CAD tools.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Early stage FPGA interconnect leakage power estimation\",\"authors\":\"Shilpa Bhoj, D. Bhatia\",\"doi\":\"10.1109/ICCD.2008.4751898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing transistor densities, rising popularity in mobile applications and migration towards eco-friendly computing systems have made power dissipation a key FPGA design issue. To meet stringent budgets, system architects need accurate estimates of power distribution at various design stages. In this work, we make several key contributions to FPGA leakage power estimation. First, we develop an accurate and efficient model to estimate total interconnect leakage power at various design stages prior to routing. Our methods derive leakage power estimates based on predicted values of routing congestion and interconnect resource utilization. We then extend the model to accomodate complex segmented routing architectures and low leakage architectures. Finally we formulate relations to generate post place leakage power estimates of individual routing channels. Our models for overall leakage power estimation achieve average accuracy rates of 93% and 89% for uniform and segmented routing architectures respectively. Experimentation results also establish the accuracy of the channel level estimation models at 85% and 80% for uniform and segmented routing structures. Our models and techniques would help designers make informed decisions by providing information on the power consumption of the interconnect fabric well before routing. Additionally, the equations can be used for architectural explorations and embedded in power and thermal aware CAD tools.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

晶体管密度的增加,移动应用的日益普及以及向环保计算系统的迁移使得功耗成为FPGA设计的关键问题。为了满足严格的预算,系统架构师需要在各个设计阶段对功率分布进行准确的估计。在这项工作中,我们对FPGA泄漏功率估计做出了几项关键贡献。首先,我们开发了一个准确有效的模型来估计在布线之前的各个设计阶段的总互连泄漏功率。我们的方法基于路由拥塞和互连资源利用率的预测值得出泄漏功率估计。然后,我们扩展模型以适应复杂的分段路由架构和低泄漏架构。最后,我们建立了生成各个路由通道的后置泄漏功率估计的关系式。我们的整体泄漏功率估计模型在均匀和分段路由架构下分别达到93%和89%的平均准确率。实验结果还表明,对于均匀和分段路由结构,信道电平估计模型的精度分别为85%和80%。我们的模型和技术可以在布线之前提供有关互连结构功耗的信息,从而帮助设计人员做出明智的决策。此外,这些方程可以用于建筑探索,并嵌入到功率和热感知CAD工具中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early stage FPGA interconnect leakage power estimation
Increasing transistor densities, rising popularity in mobile applications and migration towards eco-friendly computing systems have made power dissipation a key FPGA design issue. To meet stringent budgets, system architects need accurate estimates of power distribution at various design stages. In this work, we make several key contributions to FPGA leakage power estimation. First, we develop an accurate and efficient model to estimate total interconnect leakage power at various design stages prior to routing. Our methods derive leakage power estimates based on predicted values of routing congestion and interconnect resource utilization. We then extend the model to accomodate complex segmented routing architectures and low leakage architectures. Finally we formulate relations to generate post place leakage power estimates of individual routing channels. Our models for overall leakage power estimation achieve average accuracy rates of 93% and 89% for uniform and segmented routing architectures respectively. Experimentation results also establish the accuracy of the channel level estimation models at 85% and 80% for uniform and segmented routing structures. Our models and techniques would help designers make informed decisions by providing information on the power consumption of the interconnect fabric well before routing. Additionally, the equations can be used for architectural explorations and embedded in power and thermal aware CAD tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fine-grain dynamic sleep control scheme in MIPS R3000 Efficiency of thread-level speculation in SMT and CMP architectures - performance, power and thermal perspective Synthesis of parallel prefix adders considering switching activities A floating-point fused dot-product unit Mathematical analysis of buffer sizing for Network-on-Chips under multimedia traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1