人口统计学对检测高血压的短期心率变异性的影响

Muhammad Usman, P. Rajagopalan, Aryel Beck, Jennifer Nathania, T. Li, T. Lim
{"title":"人口统计学对检测高血压的短期心率变异性的影响","authors":"Muhammad Usman, P. Rajagopalan, Aryel Beck, Jennifer Nathania, T. Li, T. Lim","doi":"10.23919/cinc53138.2021.9662722","DOIUrl":null,"url":null,"abstract":"The relationship between heart rate variability (HRV) and hypertension is well established in multiple studies. However, there is a lack of investigation on the impact of demographics and other diseases related to cardiovascular health on the performance of HRV based hypertension detection models. This study aims to address these issues by determining the efficacy of such models in an unconstrained setting. 24 hours long ECG were recorded for 1377 subjects. HRV features from time, frequency and nonlinear domains were extracted from 1 minute long R-peak to R-peak intervals (RRIs). Demographic factors of age, gender and body mass index (BMI) were added one by one as additional features into logistic regression models. The performance of the models was analysed with respect to different age groups. The results show that inclusion of age into the HRV model increased its accuracy from 71.7% to 77.6%. However, the model's predictions were mostly similar to the ones that would be obtained with an age based threshold. This is due to the natural age bias in the data which makes age a confounder for HRV based hypertension detection. This highlights the importance of naturally occurring demographics imbalance and how this must be carefully considered when developing HRV models for hypertension.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Demographics on Short-term Heart Rate Variability for Detecting Hypertension\",\"authors\":\"Muhammad Usman, P. Rajagopalan, Aryel Beck, Jennifer Nathania, T. Li, T. Lim\",\"doi\":\"10.23919/cinc53138.2021.9662722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between heart rate variability (HRV) and hypertension is well established in multiple studies. However, there is a lack of investigation on the impact of demographics and other diseases related to cardiovascular health on the performance of HRV based hypertension detection models. This study aims to address these issues by determining the efficacy of such models in an unconstrained setting. 24 hours long ECG were recorded for 1377 subjects. HRV features from time, frequency and nonlinear domains were extracted from 1 minute long R-peak to R-peak intervals (RRIs). Demographic factors of age, gender and body mass index (BMI) were added one by one as additional features into logistic regression models. The performance of the models was analysed with respect to different age groups. The results show that inclusion of age into the HRV model increased its accuracy from 71.7% to 77.6%. However, the model's predictions were mostly similar to the ones that would be obtained with an age based threshold. This is due to the natural age bias in the data which makes age a confounder for HRV based hypertension detection. This highlights the importance of naturally occurring demographics imbalance and how this must be carefully considered when developing HRV models for hypertension.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心率变异性(HRV)与高血压之间的关系在多项研究中得到了很好的证实。然而,缺乏人口统计学和其他与心血管健康相关的疾病对基于HRV的高血压检测模型性能的影响的研究。本研究旨在通过确定这些模型在无约束环境中的有效性来解决这些问题。记录1377例受试者24小时长心电图。从1分钟长的r -峰至r -峰间隔(RRIs)中提取HRV的时间、频率和非线性特征。将年龄、性别、体质指数(BMI)等人口统计学因素作为附加特征逐一加入logistic回归模型。对不同年龄组的模型进行了性能分析。结果表明,将年龄纳入HRV模型后,其准确率从71.7%提高到77.6%。然而,该模型的预测大多与基于年龄阈值的预测相似。这是由于数据中的自然年龄偏差,使得年龄成为基于HRV的高血压检测的混杂因素。这突出了自然发生的人口不平衡的重要性,以及在开发高血压HRV模型时必须仔细考虑这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Demographics on Short-term Heart Rate Variability for Detecting Hypertension
The relationship between heart rate variability (HRV) and hypertension is well established in multiple studies. However, there is a lack of investigation on the impact of demographics and other diseases related to cardiovascular health on the performance of HRV based hypertension detection models. This study aims to address these issues by determining the efficacy of such models in an unconstrained setting. 24 hours long ECG were recorded for 1377 subjects. HRV features from time, frequency and nonlinear domains were extracted from 1 minute long R-peak to R-peak intervals (RRIs). Demographic factors of age, gender and body mass index (BMI) were added one by one as additional features into logistic regression models. The performance of the models was analysed with respect to different age groups. The results show that inclusion of age into the HRV model increased its accuracy from 71.7% to 77.6%. However, the model's predictions were mostly similar to the ones that would be obtained with an age based threshold. This is due to the natural age bias in the data which makes age a confounder for HRV based hypertension detection. This highlights the importance of naturally occurring demographics imbalance and how this must be carefully considered when developing HRV models for hypertension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1