从“互联网短信”看情感检测

U. Nagarsekar, A. Mhapsekar, P. Kulkarni, D. Kalbande
{"title":"从“互联网短信”看情感检测","authors":"U. Nagarsekar, A. Mhapsekar, P. Kulkarni, D. Kalbande","doi":"10.1109/RAICS.2013.6745494","DOIUrl":null,"url":null,"abstract":"Due to the sudden eruption of activity in the social networking domain, analysts, social media as well as general public are drawn to Sentiment Analysis domain to gain invaluable information. In this paper, we go beyond basic sentiment classification (positive, negative and neutral) and target deeper emotion classification of Twitter data. We have focused on emotion identification into Ekman's six basic emotions i.e. JOY, SURPRISE, ANGER, DISGUST, FEAR and SADNESS. We have employed two diverse machine learning algorithms with three varied datasets and analyzed their outcomes. We show how equal distribution of emotions in training tweets results in better learning accuracies and hence better performance in the classification task.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Emotion detection from “the SMS of the internet”\",\"authors\":\"U. Nagarsekar, A. Mhapsekar, P. Kulkarni, D. Kalbande\",\"doi\":\"10.1109/RAICS.2013.6745494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the sudden eruption of activity in the social networking domain, analysts, social media as well as general public are drawn to Sentiment Analysis domain to gain invaluable information. In this paper, we go beyond basic sentiment classification (positive, negative and neutral) and target deeper emotion classification of Twitter data. We have focused on emotion identification into Ekman's six basic emotions i.e. JOY, SURPRISE, ANGER, DISGUST, FEAR and SADNESS. We have employed two diverse machine learning algorithms with three varied datasets and analyzed their outcomes. We show how equal distribution of emotions in training tweets results in better learning accuracies and hence better performance in the classification task.\",\"PeriodicalId\":184155,\"journal\":{\"name\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2013.6745494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于社交网络领域的活动突然爆发,分析师,社交媒体以及公众都被吸引到情感分析领域以获得宝贵的信息。在本文中,我们超越了基本的情感分类(积极,消极和中性),并针对Twitter数据进行更深层次的情感分类。我们将情绪识别分为艾克曼的六种基本情绪,即喜悦、惊讶、愤怒、厌恶、恐惧和悲伤。我们使用了两种不同的机器学习算法和三个不同的数据集,并分析了它们的结果。我们展示了训练推文中情绪的均匀分布如何导致更好的学习准确性,从而在分类任务中获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotion detection from “the SMS of the internet”
Due to the sudden eruption of activity in the social networking domain, analysts, social media as well as general public are drawn to Sentiment Analysis domain to gain invaluable information. In this paper, we go beyond basic sentiment classification (positive, negative and neutral) and target deeper emotion classification of Twitter data. We have focused on emotion identification into Ekman's six basic emotions i.e. JOY, SURPRISE, ANGER, DISGUST, FEAR and SADNESS. We have employed two diverse machine learning algorithms with three varied datasets and analyzed their outcomes. We show how equal distribution of emotions in training tweets results in better learning accuracies and hence better performance in the classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic gesture recognition of Indian sign language considering local motion of hand using spatial location of Key Maximum Curvature Points OFDM radio based range and direction sensor for robotics applications A new built in self test pattern generator for low power dissipation and high fault coverage Reconfigurable ultrasonic beamformer Clustering of web sessions by FOGSAA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1