用于减载的风力涡轮机的单独螺距控制设计

S. Xiao, Geng Yang, H. Geng
{"title":"用于减载的风力涡轮机的单独螺距控制设计","authors":"S. Xiao, Geng Yang, H. Geng","doi":"10.1109/ECCE-ASIA.2013.6579101","DOIUrl":null,"url":null,"abstract":"The modern large wind turbines (WTs) are subject to large asymmetric loads, as a result of rotational wind field sampling, wind shear, tower shadow and yaw misalignment. Such asymmetric loads will produce large fatigue damage to blades, hub, shaft and yaw bearing. To mitigate such problem, sliding mode control (SMC) is applied to design individual pitch control (IPC) strategy of WTs in this paper. First, an extended linear model of WT accounting for dynamics of actuators and integral of output errors is derived for control design. Afterwards, a SMC-based IPC strategy is proposed for asymmetric load reduction. Poles assignment method is used to design the SMC switching function, and terminal sliding mode method is utilized to obtain the control law. Finally, the control performance of proposed method is compared to traditional collective pitch control (CPC) and proportional-integral (PI)-based IPC through simulations using FAST software. The simulation results show that the proposed SMC-based IPC can further reduce asymmetric loads compared to CPC and PI-based IPC in both steady and turbulent wind conditions.","PeriodicalId":301487,"journal":{"name":"2013 IEEE ECCE Asia Downunder","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Individual pitch control design of wind turbines for load reduction using\",\"authors\":\"S. Xiao, Geng Yang, H. Geng\",\"doi\":\"10.1109/ECCE-ASIA.2013.6579101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modern large wind turbines (WTs) are subject to large asymmetric loads, as a result of rotational wind field sampling, wind shear, tower shadow and yaw misalignment. Such asymmetric loads will produce large fatigue damage to blades, hub, shaft and yaw bearing. To mitigate such problem, sliding mode control (SMC) is applied to design individual pitch control (IPC) strategy of WTs in this paper. First, an extended linear model of WT accounting for dynamics of actuators and integral of output errors is derived for control design. Afterwards, a SMC-based IPC strategy is proposed for asymmetric load reduction. Poles assignment method is used to design the SMC switching function, and terminal sliding mode method is utilized to obtain the control law. Finally, the control performance of proposed method is compared to traditional collective pitch control (CPC) and proportional-integral (PI)-based IPC through simulations using FAST software. The simulation results show that the proposed SMC-based IPC can further reduce asymmetric loads compared to CPC and PI-based IPC in both steady and turbulent wind conditions.\",\"PeriodicalId\":301487,\"journal\":{\"name\":\"2013 IEEE ECCE Asia Downunder\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE ECCE Asia Downunder\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE-ASIA.2013.6579101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE ECCE Asia Downunder","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-ASIA.2013.6579101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

由于旋转风场采样、风切变、塔影和偏航失调等因素,现代大型风力发电机组承受着巨大的非对称载荷。这种不对称载荷会对叶片、轮毂、轴和偏航轴承产生较大的疲劳损伤。为了解决这一问题,本文将滑模控制(SMC)应用于WTs的独立螺距控制(IPC)策略设计。首先,推导了考虑执行器动力学和输出误差积分的小波变换扩展线性模型,用于控制设计。然后,提出了一种基于smc的IPC策略来实现非对称负载降低。采用极点分配法设计SMC开关函数,采用终端滑模法获得控制律。最后,通过FAST软件仿真,将该方法与传统的集体螺距控制(CPC)和基于比例积分(PI)的IPC控制性能进行了比较。仿真结果表明,在稳定风和湍流风条件下,与基于CPC和基于pi的IPC相比,基于smc的IPC可以进一步减小非对称载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Individual pitch control design of wind turbines for load reduction using
The modern large wind turbines (WTs) are subject to large asymmetric loads, as a result of rotational wind field sampling, wind shear, tower shadow and yaw misalignment. Such asymmetric loads will produce large fatigue damage to blades, hub, shaft and yaw bearing. To mitigate such problem, sliding mode control (SMC) is applied to design individual pitch control (IPC) strategy of WTs in this paper. First, an extended linear model of WT accounting for dynamics of actuators and integral of output errors is derived for control design. Afterwards, a SMC-based IPC strategy is proposed for asymmetric load reduction. Poles assignment method is used to design the SMC switching function, and terminal sliding mode method is utilized to obtain the control law. Finally, the control performance of proposed method is compared to traditional collective pitch control (CPC) and proportional-integral (PI)-based IPC through simulations using FAST software. The simulation results show that the proposed SMC-based IPC can further reduce asymmetric loads compared to CPC and PI-based IPC in both steady and turbulent wind conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of a Switched Reluctance Motor using Grain-Oriented electric steel sheet Predictive current control based multi-pulse flexible-topology thyristor AC/DC converter and its application in wind energy conversion system Hybrid winding concept for toroids Dynamic performances of ballast for T5 fluorescent lamps Recent related technologies for EV/HEV applications in JAPAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1