基于Hopfield神经网络的二维FIR陷波滤波器的最小二乘设计

W. Xu, Ruihua Zhang, Anyu Li, Boya Shi, Shuxia Yan
{"title":"基于Hopfield神经网络的二维FIR陷波滤波器的最小二乘设计","authors":"W. Xu, Ruihua Zhang, Anyu Li, Boya Shi, Shuxia Yan","doi":"10.1145/3277453.3277474","DOIUrl":null,"url":null,"abstract":"This paper presents a design paradigm for the 2-D (two-dimensional) FIR (finite impulse response) notch filter using Hopfield neural network. A Hopfield neural network is chosen and the relationship between the least squares error criterion and the Lyapunov energy function is established. The design problem is transformed into the problem of finding the minimum value of the Lyapunov energy function. When the minimum value of the Lyapunov energy function is obtained, the outputs of the Hopfield neural network are the coefficients of the 2-D FIR notch filter. The complexity of computation can be reduced by using the Hopfield neural network. The simulation results demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":186835,"journal":{"name":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Least Squares Design of 2-D FIR Notch Filters Based on the Hopfield Neural Networks\",\"authors\":\"W. Xu, Ruihua Zhang, Anyu Li, Boya Shi, Shuxia Yan\",\"doi\":\"10.1145/3277453.3277474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design paradigm for the 2-D (two-dimensional) FIR (finite impulse response) notch filter using Hopfield neural network. A Hopfield neural network is chosen and the relationship between the least squares error criterion and the Lyapunov energy function is established. The design problem is transformed into the problem of finding the minimum value of the Lyapunov energy function. When the minimum value of the Lyapunov energy function is obtained, the outputs of the Hopfield neural network are the coefficients of the 2-D FIR notch filter. The complexity of computation can be reduced by using the Hopfield neural network. The simulation results demonstrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":186835,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3277453.3277474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277453.3277474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用Hopfield神经网络设计二维有限脉冲响应陷波滤波器的范例。选择Hopfield神经网络,建立最小二乘误差准则与Lyapunov能量函数之间的关系。将设计问题转化为寻找李雅普诺夫能量函数最小值的问题。当Lyapunov能量函数的最小值得到时,Hopfield神经网络的输出为二维FIR陷波滤波器的系数。利用Hopfield神经网络可以降低计算复杂度。仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Least Squares Design of 2-D FIR Notch Filters Based on the Hopfield Neural Networks
This paper presents a design paradigm for the 2-D (two-dimensional) FIR (finite impulse response) notch filter using Hopfield neural network. A Hopfield neural network is chosen and the relationship between the least squares error criterion and the Lyapunov energy function is established. The design problem is transformed into the problem of finding the minimum value of the Lyapunov energy function. When the minimum value of the Lyapunov energy function is obtained, the outputs of the Hopfield neural network are the coefficients of the 2-D FIR notch filter. The complexity of computation can be reduced by using the Hopfield neural network. The simulation results demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Quality Comprehensive Evaluation of DC Distribution Network Based on Maximizing Deviation and Fuzzy Matter-Element Model Resource Allocation for System Throughput Maximization Based on Mobile Edge Computing Design of Sparse Cosine-Modulated Filter Banks Using BP Neural Network Inrush Current Suppression of High Voltage Shunt Capacitors Based on Precharge Statistical Shape Model Generation Using K-means Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1