基于高斯过程的全驱动六旋翼无人机鲁棒姿态跟踪控制

Tatsuya Ibuki, Hirotoshi Yoshioka, M. Sampei
{"title":"基于高斯过程的全驱动六旋翼无人机鲁棒姿态跟踪控制","authors":"Tatsuya Ibuki, Hirotoshi Yoshioka, M. Sampei","doi":"10.1080/18824889.2022.2125242","DOIUrl":null,"url":null,"abstract":"This paper presents a robust position/attitude tracking control method for a fully-actuated hexarotor unmanned aerial vehicle (UAV) based on Gaussian processes. Multirotor UAVs suffer from modelling errors due to their structure complexity and aerodynamical disturbances whose perfect mathematical formulation is intractable. To handle this issue, this paper incorporates a data-based learning technique with model-based control. The hexarotor UAV dynamical model, considering modelling errors and aerodynamic disturbances as unknown dynamics, is first derived. Gaussian process regression is next introduced as a learning method for the unknown dynamics, which provides probabilistic distributions of the predicted values. The predicted means are regarded as deterministic information and cancelled out by feedforward control inputs. The predicted variances are considered as the bounds of the model uncertainties with high probability, and a robust control method to ensure ultimate boundedness of the tracking control error is proposed for the uncertain system. The effectiveness of the proposed method is demonstrated via experiments with a self-developed hexarotor UAV testbed.","PeriodicalId":413922,"journal":{"name":"SICE journal of control, measurement, and system integration","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust pose tracking control for a fully-actuated hexarotor UAV based on Gaussian processes\",\"authors\":\"Tatsuya Ibuki, Hirotoshi Yoshioka, M. Sampei\",\"doi\":\"10.1080/18824889.2022.2125242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust position/attitude tracking control method for a fully-actuated hexarotor unmanned aerial vehicle (UAV) based on Gaussian processes. Multirotor UAVs suffer from modelling errors due to their structure complexity and aerodynamical disturbances whose perfect mathematical formulation is intractable. To handle this issue, this paper incorporates a data-based learning technique with model-based control. The hexarotor UAV dynamical model, considering modelling errors and aerodynamic disturbances as unknown dynamics, is first derived. Gaussian process regression is next introduced as a learning method for the unknown dynamics, which provides probabilistic distributions of the predicted values. The predicted means are regarded as deterministic information and cancelled out by feedforward control inputs. The predicted variances are considered as the bounds of the model uncertainties with high probability, and a robust control method to ensure ultimate boundedness of the tracking control error is proposed for the uncertain system. The effectiveness of the proposed method is demonstrated via experiments with a self-developed hexarotor UAV testbed.\",\"PeriodicalId\":413922,\"journal\":{\"name\":\"SICE journal of control, measurement, and system integration\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE journal of control, measurement, and system integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/18824889.2022.2125242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE journal of control, measurement, and system integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18824889.2022.2125242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于高斯过程的全驱动六旋翼无人机鲁棒位置/姿态跟踪控制方法。多旋翼无人机由于其结构复杂、气动干扰等问题而存在建模误差,其完美的数学公式难以确定。为了解决这一问题,本文将基于数据的学习技术与基于模型的控制技术相结合。首先建立了考虑建模误差和气动干扰为未知动力学的六旋翼无人机动力学模型。然后引入高斯过程回归作为未知动态的学习方法,它提供了预测值的概率分布。预测均值被视为确定性信息,并被前馈控制输入抵消。将预测方差作为高概率模型不确定性的界,提出了一种保证不确定系统跟踪控制误差最终有界性的鲁棒控制方法。在自行研制的六旋翼无人机试验台上进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust pose tracking control for a fully-actuated hexarotor UAV based on Gaussian processes
This paper presents a robust position/attitude tracking control method for a fully-actuated hexarotor unmanned aerial vehicle (UAV) based on Gaussian processes. Multirotor UAVs suffer from modelling errors due to their structure complexity and aerodynamical disturbances whose perfect mathematical formulation is intractable. To handle this issue, this paper incorporates a data-based learning technique with model-based control. The hexarotor UAV dynamical model, considering modelling errors and aerodynamic disturbances as unknown dynamics, is first derived. Gaussian process regression is next introduced as a learning method for the unknown dynamics, which provides probabilistic distributions of the predicted values. The predicted means are regarded as deterministic information and cancelled out by feedforward control inputs. The predicted variances are considered as the bounds of the model uncertainties with high probability, and a robust control method to ensure ultimate boundedness of the tracking control error is proposed for the uncertain system. The effectiveness of the proposed method is demonstrated via experiments with a self-developed hexarotor UAV testbed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Aging-induced degradation in tracking performance in three-dimensional movement Transfer of squeezed coherent state using quantum teleportation of continuous variables Game-theoretic modelling and analysis of strategic investments for PV and shared battery Multiple local controls integrated by RMPs for FCP-based hexapod walking Activity scenarios simulation by discovering knowledge through activities of daily living datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1